import os import json import re import base64 import streamlit as st from io import BytesIO from langchain_core.utils.function_calling import convert_to_openai_function from langchain_core.messages import ( AIMessage, BaseMessage, ChatMessage, FunctionMessage, HumanMessage, ) from langchain.tools.render import format_tool_to_openai_function from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langgraph.graph import END, StateGraph from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation from langchain_core.tools import tool from langchain_community.tools.tavily_search import TavilySearchResults from langchain_experimental.utilities import PythonREPL from langchain_openai import ChatOpenAI from typing import Annotated, Sequence from typing_extensions import TypedDict import operator import functools import matplotlib.pyplot as plt # Set up environment variables for API keys TAVILY_API_KEY = os.getenv("TAVILY_API_KEY") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # Validate API keys if not TAVILY_API_KEY or not OPENAI_API_KEY: st.error("API keys are missing. Please set TAVILY_API_KEY and OPENAI_API_KEY as secrets.") st.stop() # Define the AgentState class class AgentState(TypedDict): messages: Annotated[Sequence[BaseMessage], operator.add] sender: str # Initialize tools tavily_tool = TavilySearchResults(max_results=5) repl = PythonREPL() @tool def python_repl(code: Annotated[str, "The python code to execute to generate your chart."]): """Executes Python code to generate a chart and returns the chart as a base64-encoded image.""" try: # Execute the code exec_globals = {"plt": plt} exec_locals = {} exec(code, exec_globals, exec_locals) # Save the generated plot to a buffer buf = BytesIO() plt.savefig(buf, format="png") buf.seek(0) # Clear the plot to avoid overlapping plt.clf() plt.close() # Encode image as base64 encoded_image = base64.b64encode(buf.getvalue()).decode("utf-8") return {"status": "success", "image": encoded_image} except Exception as e: return {"status": "failed", "error": repr(e)} tools = [tavily_tool, python_repl] # Define a tool executor tool_executor = ToolExecutor(tools) # Define tool node def tool_node(state): """Executes tools in the graph.""" messages = state["messages"] last_message = messages[-1] tool_input = json.loads(last_message.additional_kwargs["function_call"]["arguments"]) if len(tool_input) == 1 and "__arg1" in tool_input: tool_input = next(iter(tool_input.values())) tool_name = last_message.additional_kwargs["function_call"]["name"] action = ToolInvocation(tool=tool_name, tool_input=tool_input) response = tool_executor.invoke(action) if isinstance(response, dict) and response.get("status") == "success" and "image" in response: return { "messages": [ { "role": "assistant", "content": "Image generated successfully.", "image": response["image"], } ] } else: function_message = FunctionMessage( content=f"{tool_name} response: {str(response)}", name=action.tool ) return {"messages": [function_message]} # Define router def router(state): """Determines the next step in the workflow.""" messages = state["messages"] last_message = messages[-1] if "function_call" in last_message.additional_kwargs: return "call_tool" if "FINAL ANSWER" in last_message.content: return "end" return "continue" # Define agent creation function def create_agent(llm, tools, system_message: str): """Creates an agent.""" functions = [convert_to_openai_function(t) for t in tools] prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are a helpful AI assistant, collaborating with other assistants." " Use the provided tools to progress towards answering the question." " If you are unable to fully answer, that's OK, another assistant with different tools " " will help where you left off. Execute what you can to make progress." " If you or any of the other assistants have the final answer or deliverable," " prefix your response with FINAL ANSWER so the team knows to stop." " You have access to the following tools: {tool_names}.\n{system_message}", ), MessagesPlaceholder(variable_name="messages"), ] ) prompt = prompt.partial(system_message=system_message) prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools])) return prompt | llm.bind_functions(functions) # Define agent node def agent_node(state, agent, name): result = agent.invoke(state) if isinstance(result, FunctionMessage): pass else: # Sanitize the name field to match OpenAI's naming conventions sanitized_name = re.sub(r"[^a-zA-Z0-9_-]", "_", name) result = HumanMessage(**result.dict(exclude={"type", "name"}), name=sanitized_name) return {"messages": [result], "sender": name} # Initialize LLM llm = ChatOpenAI(api_key=OPENAI_API_KEY) # Create agents research_agent = create_agent( llm, [tavily_tool], system_message="You should provide accurate data for the chart generator to use." ) chart_agent = create_agent( llm, [python_repl], system_message="Any charts you display will be visible by the user." ) # Define workflow graph workflow = StateGraph(AgentState) workflow.add_node("Researcher", functools.partial(agent_node, agent=research_agent, name="Researcher")) workflow.add_node("Chart Generator", functools.partial(agent_node, agent=chart_agent, name="Chart Generator")) workflow.add_node("call_tool", tool_node) workflow.add_conditional_edges("Researcher", router, {"continue": "Chart Generator", "call_tool": "call_tool", "end": END}) workflow.add_conditional_edges("Chart Generator", router, {"continue": "Researcher", "call_tool": "call_tool", "end": END}) workflow.add_conditional_edges("call_tool", lambda x: x["sender"], {"Researcher": "Researcher", "Chart Generator": "Chart Generator"}) workflow.set_entry_point("Researcher") graph = workflow.compile() # Streamlit UI st.title("Multi-Agent Workflow") user_query = st.text_area("Enter your query:", "Fetch Malaysia's GDP over the past 5 years and draw a line graph.") if st.button("Run Workflow"): st.write("Running workflow...") with st.spinner("Processing..."): try: messages = [HumanMessage(content=user_query)] for step in graph.stream({"messages": messages}, {"recursion_limit": 150}): st.write("Step Details:", step) if "messages" in step: for message in step["messages"]: if "image" in message: try: # Decode the base64-encoded image encoded_image = message["image"] decoded_image = BytesIO(base64.b64decode(encoded_image)) # Display the image st.image(decoded_image, caption="Generated Chart", use_column_width=True) except Exception as e: st.error(f"Failed to decode and display the image: {repr(e)}") elif "content" in message: # Display any text content st.write(message["content"]) except Exception as e: st.error(f"An error occurred: {e}")