Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,16 @@
|
|
1 |
import os
|
2 |
-
import json
|
3 |
-
import re
|
4 |
import base64
|
5 |
-
import streamlit as st
|
6 |
from io import BytesIO
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
BaseMessage,
|
11 |
-
ChatMessage,
|
12 |
-
FunctionMessage,
|
13 |
-
HumanMessage,
|
14 |
-
)
|
15 |
-
from langchain.tools.render import format_tool_to_openai_function
|
16 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
17 |
-
from langgraph.graph import END, StateGraph
|
18 |
-
from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation
|
19 |
from langchain_core.tools import tool
|
|
|
|
|
20 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
21 |
from langchain_experimental.utilities import PythonREPL
|
22 |
-
from
|
23 |
-
from
|
24 |
-
from typing_extensions import TypedDict
|
25 |
-
import operator
|
26 |
-
import functools
|
27 |
-
import matplotlib.pyplot as plt
|
28 |
|
29 |
# Set up environment variables for API keys
|
30 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
@@ -35,20 +21,14 @@ if not TAVILY_API_KEY or not OPENAI_API_KEY:
|
|
35 |
st.error("API keys are missing. Please set TAVILY_API_KEY and OPENAI_API_KEY as secrets.")
|
36 |
st.stop()
|
37 |
|
38 |
-
# Define the AgentState class
|
39 |
-
class AgentState(TypedDict):
|
40 |
-
messages: Annotated[Sequence[BaseMessage], operator.add]
|
41 |
-
sender: str
|
42 |
-
|
43 |
# Initialize tools
|
44 |
tavily_tool = TavilySearchResults(max_results=5)
|
45 |
-
repl = PythonREPL()
|
46 |
|
47 |
@tool
|
48 |
-
def python_repl(code:
|
49 |
"""Executes Python code to generate a chart and returns the chart as a base64-encoded image."""
|
50 |
try:
|
51 |
-
# Execute the code
|
52 |
exec_globals = {"plt": plt}
|
53 |
exec_locals = {}
|
54 |
exec(code, exec_globals, exec_locals)
|
@@ -66,130 +46,53 @@ def python_repl(code: Annotated[str, "The python code to execute to generate you
|
|
66 |
encoded_image = base64.b64encode(buf.getvalue()).decode("utf-8")
|
67 |
return {"status": "success", "image": encoded_image}
|
68 |
except Exception as e:
|
69 |
-
return {"status": "failed", "error":
|
70 |
|
71 |
tools = [tavily_tool, python_repl]
|
72 |
-
|
73 |
-
# Define a tool executor
|
74 |
tool_executor = ToolExecutor(tools)
|
75 |
|
76 |
-
# Define
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
last_message = messages[-1]
|
81 |
-
tool_input = json.loads(last_message.additional_kwargs["function_call"]["arguments"])
|
82 |
-
if len(tool_input) == 1 and "__arg1" in tool_input:
|
83 |
-
tool_input = next(iter(tool_input.values()))
|
84 |
-
tool_name = last_message.additional_kwargs["function_call"]["name"]
|
85 |
-
action = ToolInvocation(tool=tool_name, tool_input=tool_input)
|
86 |
-
response = tool_executor.invoke(action)
|
87 |
-
if isinstance(response, dict) and response.get("status") == "success" and "image" in response:
|
88 |
-
return {
|
89 |
-
"messages": [
|
90 |
-
{
|
91 |
-
"role": "assistant",
|
92 |
-
"content": "Image generated successfully.",
|
93 |
-
"image": response["image"],
|
94 |
-
}
|
95 |
-
]
|
96 |
-
}
|
97 |
-
else:
|
98 |
-
function_message = FunctionMessage(
|
99 |
-
content=f"{tool_name} response: {str(response)}", name=action.tool
|
100 |
-
)
|
101 |
-
return {"messages": [function_message]}
|
102 |
-
|
103 |
-
# Define router
|
104 |
-
def router(state):
|
105 |
-
"""Determines the next step in the workflow."""
|
106 |
-
messages = state["messages"]
|
107 |
-
last_message = messages[-1]
|
108 |
-
if "function_call" in last_message.additional_kwargs:
|
109 |
-
return "call_tool"
|
110 |
-
if "FINAL ANSWER" in last_message.content:
|
111 |
-
return "end"
|
112 |
-
return "continue"
|
113 |
-
|
114 |
-
# Define agent creation function
|
115 |
-
def create_agent(llm, tools, system_message: str):
|
116 |
-
"""Creates an agent."""
|
117 |
-
functions = [convert_to_openai_function(t) for t in tools]
|
118 |
-
prompt = ChatPromptTemplate.from_messages(
|
119 |
-
[
|
120 |
-
(
|
121 |
-
"system",
|
122 |
-
"You are a helpful AI assistant, collaborating with other assistants."
|
123 |
-
" Use the provided tools to progress towards answering the question."
|
124 |
-
" If you are unable to fully answer, that's OK, another assistant with different tools "
|
125 |
-
" will help where you left off. Execute what you can to make progress."
|
126 |
-
" If you or any of the other assistants have the final answer or deliverable,"
|
127 |
-
" prefix your response with FINAL ANSWER so the team knows to stop."
|
128 |
-
" You have access to the following tools: {tool_names}.\n{system_message}",
|
129 |
-
),
|
130 |
-
MessagesPlaceholder(variable_name="messages"),
|
131 |
-
]
|
132 |
-
)
|
133 |
-
prompt = prompt.partial(system_message=system_message)
|
134 |
-
prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
|
135 |
-
return prompt | llm.bind_functions(functions)
|
136 |
-
|
137 |
-
# Define agent node
|
138 |
-
def agent_node(state, agent, name):
|
139 |
-
result = agent.invoke(state)
|
140 |
-
if isinstance(result, FunctionMessage):
|
141 |
-
pass
|
142 |
-
else:
|
143 |
-
# Sanitize the name field to match OpenAI's naming conventions
|
144 |
-
sanitized_name = re.sub(r"[^a-zA-Z0-9_-]", "_", name)
|
145 |
-
result = HumanMessage(**result.dict(exclude={"type", "name"}), name=sanitized_name)
|
146 |
-
return {"messages": [result], "sender": name}
|
147 |
-
|
148 |
-
# Initialize LLM
|
149 |
-
llm = ChatOpenAI(api_key=OPENAI_API_KEY)
|
150 |
-
|
151 |
-
# Create agents
|
152 |
-
research_agent = create_agent(
|
153 |
-
llm, [tavily_tool], system_message="You should provide accurate data for the chart generator to use."
|
154 |
-
)
|
155 |
-
chart_agent = create_agent(
|
156 |
-
llm, [python_repl], system_message="Any charts you display will be visible by the user."
|
157 |
-
)
|
158 |
-
|
159 |
-
# Define workflow graph
|
160 |
-
workflow = StateGraph(AgentState)
|
161 |
-
workflow.add_node("Researcher", functools.partial(agent_node, agent=research_agent, name="Researcher"))
|
162 |
-
workflow.add_node("Chart Generator", functools.partial(agent_node, agent=chart_agent, name="Chart Generator"))
|
163 |
-
workflow.add_node("call_tool", tool_node)
|
164 |
-
workflow.add_conditional_edges("Researcher", router, {"continue": "Chart Generator", "call_tool": "call_tool", "end": END})
|
165 |
-
workflow.add_conditional_edges("Chart Generator", router, {"continue": "Researcher", "call_tool": "call_tool", "end": END})
|
166 |
-
workflow.add_conditional_edges("call_tool", lambda x: x["sender"], {"Researcher": "Researcher", "Chart Generator": "Chart Generator"})
|
167 |
-
workflow.set_entry_point("Researcher")
|
168 |
-
graph = workflow.compile()
|
169 |
|
170 |
# Streamlit UI
|
171 |
st.title("Multi-Agent Workflow")
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
with st.spinner("Processing..."):
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
st.error(f"An error occurred: {e}")
|
|
|
1 |
import os
|
|
|
|
|
2 |
import base64
|
|
|
3 |
from io import BytesIO
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from langchain_core.tools import tool
|
8 |
+
from langchain_core.utils.function_calling import convert_to_openai_function
|
9 |
+
from langchain_openai import ChatOpenAI
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
from langchain_experimental.utilities import PythonREPL
|
12 |
+
from langgraph.graph import StateGraph, END
|
13 |
+
from langgraph.prebuilt.tool_executor import ToolExecutor, ToolInvocation
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Set up environment variables for API keys
|
16 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
|
|
21 |
st.error("API keys are missing. Please set TAVILY_API_KEY and OPENAI_API_KEY as secrets.")
|
22 |
st.stop()
|
23 |
|
|
|
|
|
|
|
|
|
|
|
24 |
# Initialize tools
|
25 |
tavily_tool = TavilySearchResults(max_results=5)
|
|
|
26 |
|
27 |
@tool
|
28 |
+
def python_repl(code: str):
|
29 |
"""Executes Python code to generate a chart and returns the chart as a base64-encoded image."""
|
30 |
try:
|
31 |
+
# Execute the provided Python code
|
32 |
exec_globals = {"plt": plt}
|
33 |
exec_locals = {}
|
34 |
exec(code, exec_globals, exec_locals)
|
|
|
46 |
encoded_image = base64.b64encode(buf.getvalue()).decode("utf-8")
|
47 |
return {"status": "success", "image": encoded_image}
|
48 |
except Exception as e:
|
49 |
+
return {"status": "failed", "error": str(e)}
|
50 |
|
51 |
tools = [tavily_tool, python_repl]
|
|
|
|
|
52 |
tool_executor = ToolExecutor(tools)
|
53 |
|
54 |
+
# Define the multi-agent workflow
|
55 |
+
workflow = StateGraph()
|
56 |
+
workflow.add_node("call_tool", lambda state: tool_executor.invoke(ToolInvocation(**state)))
|
57 |
+
workflow.set_entry_point("call_tool")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Streamlit UI
|
60 |
st.title("Multi-Agent Workflow")
|
61 |
+
st.markdown("### Generate a Chart from Python Code")
|
62 |
+
code_input = st.text_area(
|
63 |
+
"Enter Python code for the chart:",
|
64 |
+
"""
|
65 |
+
import matplotlib.pyplot as plt
|
66 |
+
years = [2019, 2020, 2021, 2022, 2023]
|
67 |
+
gdp = [300, 310, 330, 360, 399]
|
68 |
+
plt.figure(figsize=(10, 6))
|
69 |
+
plt.plot(years, gdp, marker='o', color='b', linestyle='-')
|
70 |
+
plt.title('Malaysia GDP Over 5 Years')
|
71 |
+
plt.xlabel('Year')
|
72 |
+
plt.ylabel('GDP (in billion USD)')
|
73 |
+
plt.grid(True)
|
74 |
+
"""
|
75 |
+
)
|
76 |
+
|
77 |
+
if st.button("Generate Chart"):
|
78 |
+
st.write("Generating chart...")
|
79 |
with st.spinner("Processing..."):
|
80 |
+
# Invoke the Python REPL tool with the code
|
81 |
+
response = python_repl(code_input)
|
82 |
+
|
83 |
+
# Check response status
|
84 |
+
if response["status"] == "success" and "image" in response:
|
85 |
+
encoded_image = response["image"]
|
86 |
+
try:
|
87 |
+
# Decode the base64-encoded image
|
88 |
+
decoded_image = BytesIO(base64.b64decode(encoded_image))
|
89 |
+
# Display the image
|
90 |
+
st.image(decoded_image, caption="Generated Chart", use_column_width=True)
|
91 |
+
except Exception as e:
|
92 |
+
st.error(f"Failed to decode and display the image: {str(e)}")
|
93 |
+
else:
|
94 |
+
st.error(f"Failed to generate chart: {response.get('error', 'Unknown error')}")
|
95 |
+
|
96 |
+
st.markdown("### Example Queries")
|
97 |
+
st.write("1. Plot GDP of Malaysia over 5 years")
|
98 |
+
st.write("2. Create a bar chart of sales data")
|
|