DrishtiSharma commited on
Commit
ccc7ea4
Β·
verified Β·
1 Parent(s): eb428fa

Create persistence_issue_persists_b1v2.py

Browse files
lab/persistence_issue_persists_b1v2.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chromadb
3
+ import requests
4
+ import streamlit as st
5
+ from langchain.chains import LLMChain
6
+ from langchain.prompts import PromptTemplate
7
+ from langchain_groq import ChatGroq
8
+ from langchain.document_loaders import PDFPlumberLoader
9
+ from langchain_experimental.text_splitter import SemanticChunker
10
+ from langchain_huggingface import HuggingFaceEmbeddings
11
+ from langchain_chroma import Chroma
12
+ from prompts import rag_prompt
13
+
14
+ # Set API Keys
15
+ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
16
+
17
+ # Load LLM models
18
+ llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
19
+ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
20
+
21
+ llm_judge.verbose = True
22
+ rag_llm.verbose = True
23
+
24
+ # Clear ChromaDB cache to fix tenant issue
25
+ chromadb.api.client.SharedSystemClient.clear_system_cache()
26
+
27
+ st.title("Blah")
28
+
29
+ # **Initialize session state variables**
30
+ if "pdf_path" not in st.session_state:
31
+ st.session_state.pdf_path = None
32
+ if "pdf_loaded" not in st.session_state:
33
+ st.session_state.pdf_loaded = False
34
+ if "chunked" not in st.session_state:
35
+ st.session_state.chunked = False
36
+ if "vector_created" not in st.session_state:
37
+ st.session_state.vector_created = False
38
+ if "vector_store_path" not in st.session_state:
39
+ st.session_state.vector_store_path = "./chroma_langchain_db"
40
+ if "vector_store" not in st.session_state:
41
+ st.session_state.vector_store = None
42
+ if "documents" not in st.session_state:
43
+ st.session_state.documents = None
44
+
45
+ # Step 1: Choose PDF Source
46
+ pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
47
+
48
+ if pdf_source == "Upload a PDF file":
49
+ uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
50
+ if uploaded_file:
51
+ st.session_state.pdf_path = "temp.pdf"
52
+ with open(st.session_state.pdf_path, "wb") as f:
53
+ f.write(uploaded_file.getbuffer())
54
+ st.session_state.pdf_loaded = False
55
+ st.session_state.chunked = False
56
+ st.session_state.vector_created = False
57
+
58
+ elif pdf_source == "Enter a PDF URL":
59
+ pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
60
+ if pdf_url and not st.session_state.get("pdf_loaded", False):
61
+ with st.spinner("Downloading PDF..."):
62
+ try:
63
+ response = requests.get(pdf_url)
64
+ if response.status_code == 200:
65
+ st.session_state.pdf_path = "temp.pdf"
66
+ with open(st.session_state.pdf_path, "wb") as f:
67
+ f.write(response.content)
68
+ st.session_state.pdf_loaded = False
69
+ st.session_state.chunked = False
70
+ st.session_state.vector_created = False
71
+ st.success("βœ… PDF Downloaded Successfully!")
72
+ else:
73
+ st.error("❌ Failed to download PDF. Check the URL.")
74
+ except Exception as e:
75
+ st.error(f"Error downloading PDF: {e}")
76
+
77
+ # Step 2: Process PDF
78
+ if st.session_state.pdf_path and not st.session_state.get("pdf_loaded", False):
79
+ with st.spinner("Loading and processing PDF..."):
80
+ loader = PDFPlumberLoader(st.session_state.pdf_path)
81
+ docs = loader.load()
82
+ st.session_state.documents = docs
83
+ st.session_state.pdf_loaded = True # βœ… Prevent re-loading
84
+ st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")
85
+
86
+ # Step 3: Chunking
87
+ if st.session_state.get("pdf_loaded", False) and not st.session_state.get("chunked", False):
88
+ with st.spinner("Chunking the document..."):
89
+ model_name = "nomic-ai/modernbert-embed-base"
90
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
91
+ text_splitter = SemanticChunker(embedding_model)
92
+ documents = text_splitter.split_documents(st.session_state.documents)
93
+ st.session_state.documents = documents # βœ… Store chunked docs
94
+ st.session_state.chunked = True # βœ… Prevent re-chunking
95
+ st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")
96
+
97
+ # Step 4: Setup Vectorstore
98
+ if st.session_state.get("chunked", False) and not st.session_state.get("vector_created", False):
99
+ with st.spinner("Creating vector store..."):
100
+ model_name = "nomic-ai/modernbert-embed-base"
101
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
102
+
103
+ vector_store = Chroma(
104
+ collection_name="deepseek_collection",
105
+ collection_metadata={"hnsw:space": "cosine"},
106
+ embedding_function=embedding_model,
107
+ persist_directory=st.session_state.vector_store_path
108
+ )
109
+ vector_store.add_documents(st.session_state.documents)
110
+ num_documents = len(vector_store.get()["documents"])
111
+ st.session_state.vector_store = vector_store
112
+ st.session_state.vector_created = True # βœ… Prevent re-creating vector store
113
+ st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")
114
+
115
+ # Step 5: Query Input (this should not trigger previous steps!)
116
+ if st.session_state.get("vector_created", False) and st.session_state.get("vector_store", None):
117
+ query = st.text_input("πŸ” Enter a Query:")
118
+
119
+ if query:
120
+ with st.spinner("Retrieving relevant contexts..."):
121
+ retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
122
+ contexts = retriever.invoke(query)
123
+ context_texts = [doc.page_content for doc in contexts]
124
+
125
+ st.success(f"βœ… **Retrieved {len(context_texts)} Contexts!**")
126
+ for i, text in enumerate(context_texts, 1):
127
+ st.write(f"**Context {i}:** {text[:500]}...")
128
+
129
+ # **Step 6: Generate Final Response**
130
+ with st.spinner("Generating the final answer..."):
131
+ final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
132
+ response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
133
+ final_response = response_chain.invoke({"query": query, "context": context_texts})
134
+
135
+ st.subheader("πŸŸ₯ RAG Final Response")
136
+ st.success(final_response['final_response'])