DrishtiSharma commited on
Commit
92275a2
Β·
verified Β·
1 Parent(s): 62ae48f

Create goodbye_errors.py

Browse files
Files changed (1) hide show
  1. lab/goodbye_errors.py +322 -0
lab/goodbye_errors.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ import streamlit as st
4
+ import pickle
5
+ from langchain.chains import LLMChain
6
+ from langchain.prompts import PromptTemplate
7
+ from langchain_groq import ChatGroq
8
+ from langchain.document_loaders import PDFPlumberLoader
9
+ from langchain_experimental.text_splitter import SemanticChunker
10
+ from langchain_huggingface import HuggingFaceEmbeddings
11
+ from langchain_chroma import Chroma
12
+ from langchain.chains import SequentialChain, LLMChain
13
+
14
+ # Set API Keys
15
+ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
16
+
17
+ # Load LLM models
18
+ llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
19
+ rag_llm = ChatGroq(model="mixtral-8x7b-32768")
20
+
21
+ llm_judge.verbose = True
22
+ rag_llm.verbose = True
23
+
24
+ VECTOR_DB_PATH = "/tmp/chroma_db"
25
+ CHUNKS_FILE = "/tmp/chunks.pkl"
26
+
27
+ # Session State Initialization
28
+ if "vector_store" not in st.session_state:
29
+ st.session_state.vector_store = None
30
+ if "documents" not in st.session_state:
31
+ st.session_state.documents = None
32
+ if "pdf_path" not in st.session_state:
33
+ st.session_state.pdf_path = None
34
+ if "pdf_loaded" not in st.session_state:
35
+ st.session_state.pdf_loaded = False
36
+ if "chunked" not in st.session_state:
37
+ st.session_state.chunked = False
38
+ if "vector_created" not in st.session_state:
39
+ st.session_state.vector_created = False
40
+
41
+ st.title("Blah-2")
42
+
43
+ # Step 1: Choose PDF Source
44
+ pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True)
45
+
46
+ if pdf_source == "Upload a PDF file":
47
+ uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
48
+ if uploaded_file:
49
+ st.session_state.pdf_path = "temp.pdf"
50
+ with open(st.session_state.pdf_path, "wb") as f:
51
+ f.write(uploaded_file.getbuffer())
52
+ st.session_state.pdf_loaded = False
53
+ st.session_state.chunked = False
54
+ st.session_state.vector_created = False
55
+
56
+ elif pdf_source == "Enter a PDF URL":
57
+ pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998", key="pdf_url", on_change=lambda: st.session_state.update(trigger_download=True))
58
+
59
+ # Button OR Enter key will trigger download
60
+ if st.button("Download and Process PDF") or st.session_state.get("trigger_download", False):
61
+ with st.spinner("Downloading PDF..."):
62
+ try:
63
+ response = requests.get(pdf_url)
64
+ if response.status_code == 200:
65
+ st.session_state.pdf_path = "temp.pdf"
66
+ with open(st.session_state.pdf_path, "wb") as f:
67
+ f.write(response.content)
68
+
69
+ # Reset states
70
+ st.session_state.pdf_loaded = False
71
+ st.session_state.chunked = False
72
+ st.session_state.vector_created = False
73
+ st.session_state.trigger_download = False # Reset trigger
74
+
75
+ st.success("βœ… PDF Downloaded Successfully!")
76
+ else:
77
+ st.error("❌ Failed to download PDF. Check the URL.")
78
+ except Exception as e:
79
+ st.error(f"❌ Error downloading PDF: {e}")
80
+
81
+
82
+ # Step 2: Load & Process PDF (Only Once)
83
+ if st.session_state.pdf_path and not st.session_state.pdf_loaded:
84
+ with st.spinner("Loading PDF..."):
85
+ try:
86
+ loader = PDFPlumberLoader(st.session_state.pdf_path)
87
+ docs = loader.load()
88
+ st.session_state.documents = docs
89
+ st.session_state.pdf_loaded = True
90
+ st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")
91
+ except Exception as e:
92
+ st.error(f"❌ Error processing PDF: {e}")
93
+
94
+ # Load Cached Chunks if Available
95
+ def load_chunks():
96
+ if os.path.exists(CHUNKS_FILE):
97
+ with open(CHUNKS_FILE, "rb") as f:
98
+ return pickle.load(f)
99
+ return None
100
+
101
+ if not st.session_state.chunked: # Ensure chunking only happens once
102
+ cached_chunks = load_chunks()
103
+ if cached_chunks:
104
+ st.session_state.documents = cached_chunks
105
+ st.session_state.chunked = True
106
+
107
+ # Step 3: Chunking (Only Happens Once)
108
+ if st.session_state.pdf_loaded and not st.session_state.chunked:
109
+ with st.spinner("Chunking the document..."):
110
+ try:
111
+ model_name = "nomic-ai/modernbert-embed-base"
112
+ embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
113
+ text_splitter = SemanticChunker(embedding_model)
114
+
115
+ if st.session_state.documents:
116
+ documents = text_splitter.split_documents(st.session_state.documents)
117
+ st.session_state.documents = documents
118
+ st.session_state.chunked = True
119
+
120
+ # Save chunks for persistence
121
+ with open(CHUNKS_FILE, "wb") as f:
122
+ pickle.dump(documents, f)
123
+
124
+ st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")
125
+ except Exception as e:
126
+ st.error(f"❌ Error chunking document: {e}")
127
+
128
+ # Step 4: Setup Vectorstore
129
+ def load_vector_store():
130
+ return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
131
+
132
+ if st.session_state.chunked and not st.session_state.vector_created:
133
+ with st.spinner("Creating vector store..."):
134
+ try:
135
+ if st.session_state.vector_store is None: # Prevent unnecessary reloading
136
+ st.session_state.vector_store = load_vector_store()
137
+
138
+ if len(st.session_state.vector_store.get()["documents"]) == 0: # Prevent duplicate insertions
139
+ st.session_state.vector_store.add_documents(st.session_state.documents)
140
+
141
+ num_documents = len(st.session_state.vector_store.get()["documents"])
142
+ st.session_state.vector_created = True
143
+ st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")
144
+ except Exception as e:
145
+ st.error(f"❌ Error creating vector store: {e}")
146
+
147
+ # Debugging Logs
148
+ #st.write("πŸ“„ **PDF Loaded:**", st.session_state.pdf_loaded)
149
+ #st.write("πŸ”Ή **Chunked:**", st.session_state.chunked)
150
+ #st.write("πŸ“‚ **Vector Store Created:**", st.session_state.vector_created)
151
+
152
+
153
+ # ----------------- Query Input -----------------
154
+ query = None
155
+
156
+ # Check if a valid PDF URL has been entered (but not processed yet)
157
+ pdf_url_entered = bool(st.session_state.get("pdf_url")) # Checks if text is in the input box
158
+
159
+ # No PDF Provided Yet
160
+ if not st.session_state.pdf_path and not pdf_url_entered:
161
+ st.info("πŸ“₯ **Please upload a PDF or enter a valid URL to proceed.**")
162
+
163
+ # PDF URL Exists but Not Processed Yet (Only show if URL exists but hasn't been downloaded)
164
+ elif pdf_url_entered and not st.session_state.pdf_loaded:
165
+ st.warning("⚠️ **PDF URL detected! Click 'Download and Process PDF' to proceed.**")
166
+
167
+ # Processing in Progress
168
+ elif st.session_state.get("trigger_download", False) and (
169
+ not st.session_state.pdf_loaded or not st.session_state.chunked or not st.session_state.vector_created
170
+ ):
171
+ st.info("⏳ **Processing your document... Please wait.**")
172
+
173
+ # βœ… Step 4: Processing Complete, Ready for Questions
174
+ elif st.session_state.pdf_loaded and st.session_state.chunked and st.session_state.vector_created:
175
+ st.success("πŸŽ‰ **Processing complete! You can now ask questions.**")
176
+ query = st.text_input("πŸ” **Ask a question about the document:**")
177
+
178
+ if query:
179
+ with st.spinner("πŸ”„ Retrieving relevant context..."):
180
+ retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
181
+ contexts = retriever.invoke(query)
182
+ # Debugging: Check what was retrieved
183
+ st.write("Retrieved Contexts:", contexts)
184
+ st.write("Number of Contexts:", len(contexts))
185
+
186
+ context = [d.page_content for d in contexts]
187
+ # Debugging: Check extracted context
188
+ st.write("Extracted Context (page_content):", context)
189
+ st.write("Number of Extracted Contexts:", len(context))
190
+
191
+ relevancy_prompt = """You are an expert judge tasked with evaluating whether the EACH OF THE CONTEXT provided in the CONTEXT LIST is self sufficient to answer the QUERY asked.
192
+ Analyze the provided QUERY AND CONTEXT to determine if each Ccontent in the CONTEXT LIST contains Relevant information to answer the QUERY.
193
+
194
+ Guidelines:
195
+ 1. The content must not introduce new information beyond what's provided in the QUERY.
196
+ 2. Pay close attention to the subject of statements. Ensure that attributes, actions, or dates are correctly associated with the right entities (e.g., a person vs. a TV show they star in).
197
+ 3. Be vigilant for subtle misattributions or conflations of information, even if the date or other details are correct.
198
+ 4. Check that the content in the CONTEXT LIST doesn't oversimplify or generalize information in a way that changes the meaning of the QUERY.
199
+
200
+ Analyze the text thoroughly and assign a relevancy score 0 or 1 where:
201
+ - 0: The content has all the necessary information to answer the QUERY
202
+ - 1: The content does not has the necessary information to answer the QUERY
203
+
204
+ ```
205
+ EXAMPLE:
206
+ INPUT (for context only, not to be used for faithfulness evaluation):
207
+ What is the capital of France?
208
+
209
+ CONTEXT:
210
+ ['France is a country in Western Europe. Its capital is Paris, which is known for landmarks like the Eiffel Tower.',
211
+ 'Mr. Naveen patnaik has been the chief minister of Odisha for consequetive 5 terms']
212
+
213
+ OUTPUT:
214
+ The Context has sufficient information to answer the query.
215
+
216
+ RESPONSE:
217
+ {{"score":0}}
218
+ ```
219
+
220
+ CONTENT LIST:
221
+ {context}
222
+
223
+ QUERY:
224
+ {retriever_query}
225
+ Provide your verdict in JSON format with a single key 'score' and no preamble or explanation:
226
+ [{{"content:1,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}},
227
+ {{"content:2,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}},
228
+ ...]
229
+ """
230
+
231
+ context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt)
232
+
233
+ relevant_prompt = PromptTemplate(
234
+ input_variables=["relevancy_response"],
235
+ template="""
236
+ Your main task is to analyze the json structure as a part of the Relevancy Response.
237
+ Review the Relevancy Response and do the following:-
238
+ (1) Look at the Json Structure content
239
+ (2) Analyze the 'score' key in the Json Structure content.
240
+ (3) pick the value of 'content' key against those 'score' key value which has 0.
241
+
242
+ Relevancy Response:
243
+ {relevancy_response}
244
+
245
+ Provide your verdict in JSON format with a single key 'content number' and no preamble or explanation:
246
+ [{{"content":<content number>}}]
247
+ """
248
+ )
249
+
250
+ context_prompt = PromptTemplate(
251
+ input_variables=["context_number"],
252
+ template="""
253
+ Your main task is to analyze the json structure as a part of the Context Number Response and the list of Contexts provided in the 'Content List' and perform the following steps:-
254
+ (1) Look at the output from the Relevant Context Picker Agent.
255
+ (2) Analyze the 'content' key in the Json Structure format({{"content":<<content_number>>}}).
256
+ (3) Retrieve the value of 'content' key and pick up the context corresponding to that element from the Content List provided.
257
+ (4) Pass the retrieved context for each corresponing element number referred in the 'Context Number Response'
258
+
259
+ Context Number Response:
260
+ {context_number}
261
+
262
+ Content List:
263
+ {context}
264
+
265
+ Provide your verdict in JSON format with a two key 'relevant_content' and 'context_number' no preamble or explanation:
266
+ [{{"context_number":<content1>,"relevant_content":<content corresponing to that element 1 in the Content List>}},
267
+ {{"context_number":<content4>,"relevant_content":<content corresponing to that element 4 in the Content List>}},
268
+ ...
269
+ ]
270
+ """
271
+ )
272
+
273
+ rag_prompt = """ You are a helpful assistant very profiient in formulating clear and meaningful answers from the context provided.Based on the CONTEXT Provided ,Please formulate
274
+ a clear concise and meaningful answer for the QUERY asked.Please refrain from making up your own answer in case the COTEXT provided is not sufficient to answer the QUERY.In such a situation please respond as 'I do not know'.
275
+
276
+ QUERY:
277
+ {query}
278
+
279
+ CONTEXT
280
+ {context}
281
+
282
+ ANSWER:
283
+ """
284
+
285
+ context_relevancy_evaluation_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
286
+
287
+ response_crisis = context_relevancy_evaluation_chain.invoke({"context":context,"retriever_query":query})
288
+
289
+ pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
290
+
291
+ relevant_response = pick_relevant_context_chain.invoke({"relevancy_response":response_crisis['relevancy_response']})
292
+
293
+ relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
294
+
295
+ contexts = relevant_contexts_chain.invoke({"context_number":relevant_response['context_number'],"context":context})
296
+
297
+ final_prompt = PromptTemplate(input_variables=["query","context"],template=rag_prompt)
298
+
299
+ response_chain = LLMChain(llm=rag_llm,prompt=final_prompt,output_key="final_response")
300
+
301
+ response = response_chain.invoke({"query":query,"context":contexts['relevant_contexts']})
302
+
303
+ # Orchestrate using SequentialChain
304
+ context_management_chain = SequentialChain(
305
+ chains=[context_relevancy_evaluation_chain ,pick_relevant_context_chain, relevant_contexts_chain,response_chain],
306
+ input_variables=["context","retriever_query","query"],
307
+ output_variables=["relevancy_response", "context_number","relevant_contexts","final_response"]
308
+ )
309
+
310
+ final_output = context_management_chain({"context":context,"retriever_query":query,"query":query})
311
+
312
+ st.subheader('final_output["relevancy_response"]')
313
+ st.write(final_output["relevancy_response"] )
314
+
315
+ st.subheader('final_output["context_number"]')
316
+ st.write(final_output["context_number"])
317
+
318
+ st.subheader('final_output["relevant_contexts"]')
319
+ st.write(final_output["relevant_contexts"])
320
+
321
+ st.subheader('final_output["final_response"]')
322
+ st.write(final_output["final_response"])