|
import streamlit as st |
|
import os |
|
import requests |
|
import chromadb |
|
import pdfplumber |
|
from langchain.document_loaders import PDFPlumberLoader |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain_chroma import Chroma |
|
from langchain.chains import LLMChain |
|
from langchain.prompts import PromptTemplate |
|
from langchain_groq import ChatGroq |
|
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth |
|
|
|
|
|
st.set_page_config(page_title="Blah", layout="centered") |
|
st.title("Blah-1") |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") |
|
os.environ["HF_TOKEN"] = st.secrets.get("HF_TOKEN", "") |
|
|
|
|
|
chromadb.api.client.SharedSystemClient.clear_system_cache() |
|
|
|
|
|
if "pdf_loaded" not in st.session_state: |
|
st.session_state.pdf_loaded = False |
|
if "chunked" not in st.session_state: |
|
st.session_state.chunked = False |
|
if "vector_created" not in st.session_state: |
|
st.session_state.vector_created = False |
|
if "processed_chunks" not in st.session_state: |
|
st.session_state.processed_chunks = None |
|
if "vector_store" not in st.session_state: |
|
st.session_state.vector_store = None |
|
|
|
|
|
def extract_pdf_title(pdf_path): |
|
"""Extract title from PDF metadata or first page.""" |
|
try: |
|
with pdfplumber.open(pdf_path) as pdf: |
|
first_page = pdf.pages[0] |
|
text = first_page.extract_text() |
|
return text.split("\n")[0] if text else "Untitled Document" |
|
except Exception as e: |
|
return "Untitled Document" |
|
|
|
|
|
st.subheader("π PDF Selection") |
|
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) |
|
|
|
if pdf_source == "Upload a PDF file": |
|
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"]) |
|
if uploaded_file: |
|
st.session_state.pdf_path = "temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
|
|
elif pdf_source == "Enter a PDF URL": |
|
pdf_url = st.text_input("Enter PDF URL:") |
|
if pdf_url and not st.session_state.pdf_loaded: |
|
with st.spinner("π Downloading PDF..."): |
|
try: |
|
response = requests.get(pdf_url) |
|
if response.status_code == 200: |
|
st.session_state.pdf_path = "temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(response.content) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
st.success("β
PDF Downloaded Successfully!") |
|
else: |
|
st.error("β Failed to download PDF. Check the URL.") |
|
except Exception as e: |
|
st.error(f"Error downloading PDF: {e}") |
|
|
|
|
|
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state: |
|
with st.spinner("π Processing document... Please wait."): |
|
loader = PDFPlumberLoader(st.session_state.pdf_path) |
|
docs = loader.load() |
|
|
|
|
|
metadata = docs[0].metadata |
|
|
|
|
|
title = metadata.get("Title", "").strip() if metadata.get("Title") else extract_pdf_title(st.session_state.pdf_path) |
|
|
|
|
|
st.subheader(f"π Document Title: {title}") |
|
|
|
|
|
st.json(metadata) |
|
|
|
|
|
model_name = "nomic-ai/modernbert-embed-base" |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}) |
|
|
|
|
|
if not st.session_state.chunked: |
|
text_splitter = SemanticChunker(embedding_model) |
|
document_chunks = text_splitter.split_documents(docs) |
|
st.session_state.processed_chunks = document_chunks |
|
st.session_state.chunked = True |
|
|
|
st.session_state.pdf_loaded = True |
|
st.success("β
Document processed and chunked successfully!") |
|
|
|
|
|
if not st.session_state.vector_created and st.session_state.processed_chunks: |
|
with st.spinner("π Initializing Vector Store..."): |
|
st.session_state.vector_store = Chroma( |
|
collection_name="deepseek_collection", |
|
collection_metadata={"hnsw:space": "cosine"}, |
|
embedding_function=embedding_model |
|
) |
|
st.session_state.vector_store.add_documents(st.session_state.processed_chunks) |
|
st.session_state.vector_created = True |
|
st.success("β
Vector store initialized successfully!") |
|
|
|
|
|
query = st.text_input("π Ask a question about the document:") |
|
|
|
if query: |
|
with st.spinner("π Retrieving relevant context..."): |
|
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
retrieved_docs = retriever.invoke(query) |
|
context = [d.page_content for d in retrieved_docs] |
|
st.success("β
Context retrieved successfully!") |
|
|
|
|
|
context_relevancy_chain = LLMChain(llm=ChatGroq(model="deepseek-r1-distill-llama-70b"), prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response") |
|
response_chain = LLMChain(llm=ChatGroq(model="mixtral-8x7b-32768"), prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response") |
|
|
|
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query}) |
|
final_response = response_chain.invoke({"query": query, "context": context}) |
|
|
|
|
|
st.markdown("### π¦ Picked Relevant Contexts") |
|
st.json(response_crisis["relevancy_response"]) |
|
|
|
st.markdown("## π₯ RAG Final Response") |
|
st.write(final_response["final_response"]) |
|
|