docqa-with-deepseek-r1 / lab /metadata_fixed.py
DrishtiSharma's picture
Create metadata_fixed.py
5ea6ce5 verified
raw
history blame
6.7 kB
import streamlit as st
import os
import requests
import chromadb
import pdfplumber
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah", layout="centered")
st.title("Blah-1")
# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
os.environ["HF_TOKEN"] = st.secrets.get("HF_TOKEN", "")
# ----------------- Clear ChromaDB Cache -----------------
chromadb.api.client.SharedSystemClient.clear_system_cache()
# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
# ----------------- Function to Extract PDF Title -----------------
def extract_pdf_title(pdf_path):
"""Extract title from PDF metadata or first page."""
try:
with pdfplumber.open(pdf_path) as pdf:
first_page = pdf.pages[0]
text = first_page.extract_text()
return text.split("\n")[0] if text else "Untitled Document"
except Exception as e:
return "Untitled Document"
# ----------------- PDF Selection (Upload or URL) -----------------
st.subheader("πŸ“‚ PDF Selection")
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:")
if pdf_url and not st.session_state.pdf_loaded:
with st.spinner("πŸ”„ Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("βœ… PDF Downloaded Successfully!")
else:
st.error("❌ Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"Error downloading PDF: {e}")
# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
with st.spinner("πŸ”„ Processing document... Please wait."):
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
# Extract metadata
metadata = docs[0].metadata
# Try to get title from metadata, fallback to first page
title = metadata.get("Title", "").strip() if metadata.get("Title") else extract_pdf_title(st.session_state.pdf_path)
# Display Title
st.subheader(f"πŸ“„ Document Title: {title}")
# Debugging: Show metadata
st.json(metadata)
# Embedding Model (HF on CPU)
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
# Prevent unnecessary re-chunking
if not st.session_state.chunked:
text_splitter = SemanticChunker(embedding_model)
document_chunks = text_splitter.split_documents(docs)
st.session_state.processed_chunks = document_chunks
st.session_state.chunked = True
st.session_state.pdf_loaded = True
st.success("βœ… Document processed and chunked successfully!")
# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
with st.spinner("πŸ”„ Initializing Vector Store..."):
st.session_state.vector_store = Chroma(
collection_name="deepseek_collection",
collection_metadata={"hnsw:space": "cosine"},
embedding_function=embedding_model
)
st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
st.session_state.vector_created = True
st.success("βœ… Vector store initialized successfully!")
# ----------------- Query Input -----------------
query = st.text_input("πŸ” Ask a question about the document:")
if query:
with st.spinner("πŸ”„ Retrieving relevant context..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
retrieved_docs = retriever.invoke(query)
context = [d.page_content for d in retrieved_docs]
st.success("βœ… Context retrieved successfully!")
# ----------------- Run Individual Chains Explicitly -----------------
context_relevancy_chain = LLMChain(llm=ChatGroq(model="deepseek-r1-distill-llama-70b"), prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
response_chain = LLMChain(llm=ChatGroq(model="mixtral-8x7b-32768"), prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
final_response = response_chain.invoke({"query": query, "context": context})
# ----------------- Display All Outputs -----------------
st.markdown("### 🟦 Picked Relevant Contexts")
st.json(response_crisis["relevancy_response"])
st.markdown("## πŸŸ₯ RAG Final Response")
st.write(final_response["final_response"])