|
import streamlit as st |
|
import os |
|
import requests |
|
import tempfile |
|
import chromadb |
|
from langchain.document_loaders import PDFPlumberLoader |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain_chroma import Chroma |
|
from langchain.chains import LLMChain, SequentialChain |
|
from langchain.prompts import PromptTemplate |
|
from langchain_groq import ChatGroq |
|
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth |
|
|
|
|
|
st.set_page_config(page_title="Blah", layout="wide") |
|
st.image("https://huggingface.co/front/assets/huggingface_logo-noborder.svg", width=150) |
|
st.title("Blah-1") |
|
|
|
|
|
|
|
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") |
|
|
|
|
|
chromadb.api.client.SharedSystemClient.clear_system_cache() |
|
|
|
|
|
if "pdf_loaded" not in st.session_state: |
|
st.session_state.pdf_loaded = False |
|
if "chunked" not in st.session_state: |
|
st.session_state.chunked = False |
|
if "vector_created" not in st.session_state: |
|
st.session_state.vector_created = False |
|
if "processed_chunks" not in st.session_state: |
|
st.session_state.processed_chunks = None |
|
if "vector_store" not in st.session_state: |
|
st.session_state.vector_store = None |
|
|
|
|
|
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") |
|
rag_llm = ChatGroq(model="mixtral-8x7b-32768") |
|
|
|
|
|
st.sidebar.subheader("π PDF Selection") |
|
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) |
|
|
|
if pdf_source == "Upload a PDF file": |
|
uploaded_file = st.sidebar.file_uploader("Upload your PDF file", type=["pdf"]) |
|
if uploaded_file: |
|
st.session_state.pdf_path = "temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
|
|
elif pdf_source == "Enter a PDF URL": |
|
pdf_url = st.sidebar.text_input("Enter PDF URL:") |
|
if pdf_url and not st.session_state.pdf_loaded: |
|
with st.spinner("π Downloading PDF..."): |
|
try: |
|
response = requests.get(pdf_url) |
|
if response.status_code == 200: |
|
st.session_state.pdf_path = "temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(response.content) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
st.success("β
PDF Downloaded Successfully!") |
|
else: |
|
st.error("β Failed to download PDF. Check the URL.") |
|
except Exception as e: |
|
st.error(f"Error downloading PDF: {e}") |
|
|
|
|
|
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state: |
|
with st.spinner("π Processing document... Please wait."): |
|
loader = PDFPlumberLoader(st.session_state.pdf_path) |
|
docs = loader.load() |
|
|
|
|
|
model_name = "nomic-ai/modernbert-embed-base" |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}) |
|
|
|
|
|
text_splitter = SemanticChunker(embedding_model) |
|
document_chunks = text_splitter.split_documents(docs) |
|
|
|
|
|
st.session_state.processed_chunks = document_chunks |
|
st.session_state.pdf_loaded = True |
|
st.success("β
Document processed and chunked successfully!") |
|
|
|
|
|
if not st.session_state.vector_created and st.session_state.processed_chunks: |
|
with st.spinner("π Initializing Vector Store..."): |
|
vector_store = Chroma( |
|
collection_name="deepseek_collection", |
|
collection_metadata={"hnsw:space": "cosine"}, |
|
embedding_function=embedding_model, |
|
persist_directory="./chroma_langchain_db" |
|
) |
|
vector_store.add_documents(st.session_state.processed_chunks) |
|
st.session_state.vector_store = vector_store |
|
st.session_state.vector_created = True |
|
st.success("β
Vector store initialized successfully!") |
|
|
|
|
|
query = st.text_input("π Ask a question about the document:") |
|
|
|
if query: |
|
with st.spinner("π Retrieving relevant context..."): |
|
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
retrieved_docs = retriever.invoke(query) |
|
context = [d.page_content for d in retrieved_docs] |
|
st.success("β
Context retrieved successfully!") |
|
|
|
|
|
with st.spinner("π Running full pipeline..."): |
|
context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt) |
|
relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt) |
|
context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth) |
|
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt) |
|
|
|
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response") |
|
relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number") |
|
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts") |
|
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response") |
|
|
|
context_management_chain = SequentialChain( |
|
chains=[context_relevancy_chain, relevant_context_chain, relevant_contexts_chain, response_chain], |
|
input_variables=["context", "retriever_query", "query"], |
|
output_variables=["relevancy_response", "context_number", "relevant_contexts", "final_response"] |
|
) |
|
|
|
final_output = context_management_chain.invoke({"context": context, "retriever_query": query, "query": query}) |
|
st.success("β
Full pipeline executed successfully!") |
|
|
|
|
|
st.subheader("π₯ Context Relevancy Evaluation") |
|
st.json(final_output["relevancy_response"]) |
|
|
|
st.subheader("π¦ Picked Relevant Contexts") |
|
st.json(final_output["context_number"]) |
|
|
|
st.subheader("π₯ Extracted Relevant Contexts") |
|
st.json(final_output["relevant_contexts"]) |
|
|
|
st.subheader("π₯ RAG Final Response") |
|
st.write(final_output["final_response"]) |
|
|