|
import os |
|
import chromadb |
|
import requests |
|
import streamlit as st |
|
from langchain.chains import LLMChain |
|
from langchain.prompts import PromptTemplate |
|
from langchain_groq import ChatGroq |
|
from langchain.document_loaders import PDFPlumberLoader |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_chroma import Chroma |
|
from prompts import rag_prompt |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") |
|
|
|
|
|
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") |
|
rag_llm = ChatGroq(model="mixtral-8x7b-32768") |
|
|
|
llm_judge.verbose = True |
|
rag_llm.verbose = True |
|
|
|
|
|
chromadb.api.client.SharedSystemClient.clear_system_cache() |
|
|
|
st.title("Blah - 1") |
|
|
|
|
|
if "pdf_path" not in st.session_state: |
|
st.session_state.pdf_path = None |
|
if "pdf_loaded" not in st.session_state: |
|
st.session_state.pdf_loaded = False |
|
if "chunked" not in st.session_state: |
|
st.session_state.chunked = False |
|
if "vector_created" not in st.session_state: |
|
st.session_state.vector_created = False |
|
if "vector_store_path" not in st.session_state: |
|
st.session_state.vector_store_path = "./chroma_langchain_db" |
|
if "vector_store" not in st.session_state: |
|
st.session_state.vector_store = None |
|
if "documents" not in st.session_state: |
|
st.session_state.documents = None |
|
|
|
|
|
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) |
|
|
|
if pdf_source == "Upload a PDF file": |
|
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf") |
|
if uploaded_file: |
|
st.session_state.pdf_path = "temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
|
|
elif pdf_source == "Enter a PDF URL": |
|
pdf_url = st.text_input("Enter PDF URL:") |
|
if pdf_url and not st.session_state.get("pdf_loaded", False): |
|
with st.spinner("Downloading PDF..."): |
|
try: |
|
response = requests.get(pdf_url) |
|
if response.status_code == 200: |
|
st.session_state.pdf_path = "temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(response.content) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
st.success("β
PDF Downloaded Successfully!") |
|
else: |
|
st.error("β Failed to download PDF. Check the URL.") |
|
except Exception as e: |
|
st.error(f"Error downloading PDF: {e}") |
|
|
|
|
|
if st.session_state.pdf_path and not st.session_state.get("pdf_loaded", False): |
|
with st.spinner("Loading and processing PDF..."): |
|
loader = PDFPlumberLoader(st.session_state.pdf_path) |
|
docs = loader.load() |
|
st.session_state.documents = docs |
|
st.session_state.pdf_loaded = True |
|
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}") |
|
|
|
|
|
if st.session_state.get("pdf_loaded", False) and not st.session_state.get("chunked", False): |
|
with st.spinner("Chunking the document..."): |
|
model_name = "nomic-ai/modernbert-embed-base" |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False}) |
|
text_splitter = SemanticChunker(embedding_model) |
|
documents = text_splitter.split_documents(st.session_state.documents) |
|
st.session_state.documents = documents |
|
st.session_state.chunked = True |
|
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}") |
|
|
|
|
|
if st.session_state.get("chunked", False) and not st.session_state.get("vector_created", False): |
|
with st.spinner("Creating vector store..."): |
|
embedding_model = HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False}) |
|
|
|
vector_store = Chroma( |
|
collection_name="deepseek_collection", |
|
collection_metadata={"hnsw:space": "cosine"}, |
|
embedding_function=embedding_model, |
|
persist_directory=st.session_state.vector_store_path |
|
) |
|
vector_store.add_documents(st.session_state.documents) |
|
num_documents = len(vector_store.get()["documents"]) |
|
st.session_state.vector_store = vector_store |
|
st.session_state.vector_created = True |
|
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}") |
|
|
|
|
|
if st.session_state.get("vector_created", False) and st.session_state.get("vector_store", None): |
|
query = st.text_input("π Enter a Query:") |
|
|
|
if query and st.session_state.get("vector_created", False): |
|
with st.spinner("Retrieving relevant contexts..."): |
|
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
contexts = retriever.invoke(query) |
|
context_texts = [doc.page_content for doc in contexts] |
|
|
|
st.success(f"β
**Retrieved {len(context_texts)} Contexts!**") |
|
for i, text in enumerate(context_texts, 1): |
|
st.write(f"**Context {i}:** {text[:500]}...") |
|
|
|
|
|
with st.spinner("Generating the final answer..."): |
|
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt) |
|
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response") |
|
final_response = response_chain.invoke({"query": query, "context": context_texts}) |
|
|
|
st.subheader("π₯ RAG Final Response") |
|
st.success(final_response['final_response']) |