|
import os |
|
import requests |
|
import streamlit as st |
|
from langchain.chains import SequentialChain, LLMChain |
|
from langchain.prompts import PromptTemplate |
|
from langchain_groq import ChatGroq |
|
from langchain.document_loaders import PDFPlumberLoader |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_chroma import Chroma |
|
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth |
|
|
|
|
|
|
|
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") |
|
|
|
|
|
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") |
|
rag_llm = ChatGroq(model="mixtral-8x7b-32768") |
|
|
|
llm_judge.verbose = True |
|
rag_llm.verbose = True |
|
|
|
st.title("β") |
|
|
|
|
|
|
|
pdf_path = None |
|
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) |
|
|
|
|
|
if pdf_source == "Upload a PDF file": |
|
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf") |
|
if uploaded_file: |
|
with open("temp.pdf", "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
pdf_path = "temp.pdf" |
|
|
|
elif pdf_source == "Enter a PDF URL": |
|
pdf_url = st.text_input("Enter PDF URL:") |
|
if pdf_url: |
|
with st.spinner("Downloading PDF..."): |
|
try: |
|
response = requests.get(pdf_url) |
|
if response.status_code == 200: |
|
with open("temp.pdf", "wb") as f: |
|
f.write(response.content) |
|
pdf_path = "temp.pdf" |
|
st.success("β
PDF Downloaded Successfully!") |
|
else: |
|
st.error("β Failed to download PDF. Check the URL.") |
|
pdf_path = None |
|
except Exception as e: |
|
st.error(f"Error downloading PDF: {e}") |
|
pdf_path = None |
|
else: |
|
pdf_path = None |
|
|
|
|
|
if pdf_path: |
|
with st.spinner("Loading PDF..."): |
|
loader = PDFPlumberLoader(pdf_path) |
|
docs = loader.load() |
|
|
|
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}") |
|
|
|
|
|
with st.spinner("Chunking the document..."): |
|
model_name = "nomic-ai/modernbert-embed-base" |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}) |
|
text_splitter = SemanticChunker(embedding_model) |
|
documents = text_splitter.split_documents(docs) |
|
|
|
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}") |
|
|
|
|
|
with st.spinner("Creating vector store..."): |
|
vector_store = Chroma( |
|
collection_name="deepseek_collection", |
|
collection_metadata={"hnsw:space": "cosine"}, |
|
embedding_function=embedding_model |
|
) |
|
vector_store.add_documents(documents) |
|
num_documents = len(vector_store.get()["documents"]) |
|
|
|
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}") |
|
|
|
|
|
query = st.text_input("π Enter a Query:") |
|
if query: |
|
with st.spinner("Retrieving relevant contexts..."): |
|
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
contexts = retriever.invoke(query) |
|
context_texts = [doc.page_content for doc in contexts] |
|
|
|
st.success(f"β
**Retrieved {len(context_texts)} Contexts!**") |
|
for i, text in enumerate(context_texts, 1): |
|
st.write(f"**Context {i}:** {text[:500]}...") |
|
|
|
|
|
with st.spinner("Evaluating context relevancy..."): |
|
context_relevancy_checker_prompt = PromptTemplate( |
|
input_variables=["retriever_query", "context"], template=relevancy_prompt |
|
) |
|
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response") |
|
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query}) |
|
|
|
st.subheader("π₯ Context Relevancy Evaluation") |
|
st.json(relevancy_response['relevancy_response']) |
|
|
|
|
|
with st.spinner("Selecting the most relevant contexts..."): |
|
relevant_prompt = PromptTemplate( |
|
input_variables=["relevancy_response"], template=relevant_context_picker_prompt |
|
) |
|
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number") |
|
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']}) |
|
|
|
st.subheader("π¦ Pick Relevant Context Chain") |
|
st.json(relevant_response['context_number']) |
|
|
|
|
|
with st.spinner("Retrieving final context..."): |
|
context_prompt = PromptTemplate( |
|
input_variables=["context_number", "context"], template=response_synth |
|
) |
|
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts") |
|
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts}) |
|
|
|
st.subheader("π₯ Relevant Contexts Extracted") |
|
st.json(final_contexts['relevant_contexts']) |
|
|
|
|
|
with st.spinner("Generating the final answer..."): |
|
final_prompt = PromptTemplate( |
|
input_variables=["query", "context"], template=rag_prompt |
|
) |
|
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response") |
|
final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']}) |
|
|
|
st.subheader("π₯ RAG Final Response") |
|
st.success(final_response['final_response']) |
|
|
|
|
|
st.subheader("π **Workflow Breakdown:**") |
|
st.json({ |
|
"Context Relevancy Evaluation": relevancy_response["relevancy_response"], |
|
"Relevant Contexts": relevant_response["context_number"], |
|
"Extracted Contexts": final_contexts["relevant_contexts"], |
|
"Final Answer": final_response["final_response"] |
|
}) |