|
import os |
|
import requests |
|
import streamlit as st |
|
import pickle |
|
from langchain.chains import LLMChain |
|
from langchain.prompts import PromptTemplate |
|
from langchain_groq import ChatGroq |
|
from langchain.document_loaders import PDFPlumberLoader |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_chroma import Chroma |
|
from langchain.chains import SequentialChain, LLMChain |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") |
|
|
|
|
|
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") |
|
rag_llm = ChatGroq(model="mixtral-8x7b-32768") |
|
|
|
llm_judge.verbose = True |
|
rag_llm.verbose = True |
|
|
|
VECTOR_DB_PATH = "/tmp/chroma_db" |
|
CHUNKS_FILE = "/tmp/chunks.pkl" |
|
|
|
|
|
if "vector_store" not in st.session_state: |
|
st.session_state.vector_store = None |
|
if "documents" not in st.session_state: |
|
st.session_state.documents = None |
|
if "pdf_path" not in st.session_state: |
|
st.session_state.pdf_path = None |
|
if "pdf_loaded" not in st.session_state: |
|
st.session_state.pdf_loaded = False |
|
if "chunked" not in st.session_state: |
|
st.session_state.chunked = False |
|
if "vector_created" not in st.session_state: |
|
st.session_state.vector_created = False |
|
|
|
st.title("Blah-2") |
|
|
|
|
|
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True) |
|
|
|
|
|
def download_pdf(): |
|
if st.session_state.pdf_url and not st.session_state.pdf_path: |
|
with st.spinner("Downloading PDF..."): |
|
try: |
|
response = requests.get(st.session_state.pdf_url) |
|
if response.status_code == 200: |
|
st.session_state.pdf_path = "temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(response.content) |
|
|
|
|
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
|
|
st.success("β
PDF Downloaded Successfully!") |
|
else: |
|
st.error("β Failed to download PDF. Check the URL.") |
|
except Exception as e: |
|
st.error(f"β Error downloading PDF: {e}") |
|
|
|
if pdf_source == "Upload a PDF file": |
|
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf") |
|
if uploaded_file: |
|
st.session_state.pdf_path = "temp.pdf" |
|
with open(st.session_state.pdf_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
st.session_state.pdf_loaded = False |
|
st.session_state.chunked = False |
|
st.session_state.vector_created = False |
|
|
|
elif pdf_source == "Enter a PDF URL": |
|
|
|
st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998", key="pdf_url", on_change=download_pdf) |
|
|
|
|
|
if st.button("Load PDF"): |
|
download_pdf() |
|
|
|
|
|
|
|
if st.session_state.pdf_path and not st.session_state.pdf_loaded: |
|
with st.spinner("Loading PDF..."): |
|
try: |
|
loader = PDFPlumberLoader(st.session_state.pdf_path) |
|
docs = loader.load() |
|
st.session_state.documents = docs |
|
st.session_state.pdf_loaded = True |
|
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}") |
|
except Exception as e: |
|
st.error(f"β Error processing PDF: {e}") |
|
|
|
|
|
def load_chunks(): |
|
if os.path.exists(CHUNKS_FILE): |
|
with open(CHUNKS_FILE, "rb") as f: |
|
return pickle.load(f) |
|
return None |
|
|
|
if not st.session_state.chunked: |
|
cached_chunks = load_chunks() |
|
if cached_chunks: |
|
st.session_state.documents = cached_chunks |
|
st.session_state.chunked = True |
|
|
|
|
|
if st.session_state.pdf_loaded and not st.session_state.chunked: |
|
with st.spinner("Chunking the document..."): |
|
try: |
|
model_name = "nomic-ai/modernbert-embed-base" |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}) |
|
text_splitter = SemanticChunker(embedding_model) |
|
|
|
if st.session_state.documents: |
|
documents = text_splitter.split_documents(st.session_state.documents) |
|
st.session_state.documents = documents |
|
st.session_state.chunked = True |
|
|
|
|
|
with open(CHUNKS_FILE, "wb") as f: |
|
pickle.dump(documents, f) |
|
|
|
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}") |
|
except Exception as e: |
|
st.error(f"β Error chunking document: {e}") |
|
|
|
|
|
def load_vector_store(): |
|
return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base")) |
|
|
|
if st.session_state.chunked and not st.session_state.vector_created: |
|
with st.spinner("Creating vector store..."): |
|
try: |
|
if st.session_state.vector_store is None: |
|
st.session_state.vector_store = load_vector_store() |
|
|
|
if len(st.session_state.vector_store.get()["documents"]) == 0: |
|
st.session_state.vector_store.add_documents(st.session_state.documents) |
|
|
|
num_documents = len(st.session_state.vector_store.get()["documents"]) |
|
st.session_state.vector_created = True |
|
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}") |
|
except Exception as e: |
|
st.error(f"β Error creating vector store: {e}") |
|
|
|
|
|
st.write("π **PDF Loaded:**", st.session_state.pdf_loaded) |
|
st.write("πΉ **Chunked:**", st.session_state.chunked) |
|
st.write("π **Vector Store Created:**", st.session_state.vector_created) |
|
|
|
|
|
|
|
query = st.text_input("π Ask a question about the document:") |
|
if query: |
|
with st.spinner("π Retrieving relevant context..."): |
|
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) |
|
contexts = retriever.invoke(query) |
|
|
|
st.write("Retrieved Contexts:", contexts) |
|
st.write("Number of Contexts:", len(contexts)) |
|
|
|
context = [d.page_content for d in contexts] |
|
|
|
st.write("Extracted Context (page_content):", context) |
|
st.write("Number of Extracted Contexts:", len(context)) |
|
|
|
relevancy_prompt = """You are an expert judge tasked with evaluating whether the EACH OF THE CONTEXT provided in the CONTEXT LIST is self sufficient to answer the QUERY asked. |
|
Analyze the provided QUERY AND CONTEXT to determine if each Ccontent in the CONTEXT LIST contains Relevant information to answer the QUERY. |
|
|
|
Guidelines: |
|
1. The content must not introduce new information beyond what's provided in the QUERY. |
|
2. Pay close attention to the subject of statements. Ensure that attributes, actions, or dates are correctly associated with the right entities (e.g., a person vs. a TV show they star in). |
|
3. Be vigilant for subtle misattributions or conflations of information, even if the date or other details are correct. |
|
4. Check that the content in the CONTEXT LIST doesn't oversimplify or generalize information in a way that changes the meaning of the QUERY. |
|
|
|
Analyze the text thoroughly and assign a relevancy score 0 or 1 where: |
|
- 0: The content has all the necessary information to answer the QUERY |
|
- 1: The content does not has the necessary information to answer the QUERY |
|
|
|
``` |
|
EXAMPLE: |
|
INPUT (for context only, not to be used for faithfulness evaluation): |
|
What is the capital of France? |
|
|
|
CONTEXT: |
|
['France is a country in Western Europe. Its capital is Paris, which is known for landmarks like the Eiffel Tower.', |
|
'Mr. Naveen patnaik has been the chief minister of Odisha for consequetive 5 terms'] |
|
|
|
OUTPUT: |
|
The Context has sufficient information to answer the query. |
|
|
|
RESPONSE: |
|
{{"score":0}} |
|
``` |
|
|
|
CONTENT LIST: |
|
{context} |
|
|
|
QUERY: |
|
{retriever_query} |
|
Provide your verdict in JSON format with a single key 'score' and no preamble or explanation: |
|
[{{"content:1,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}}, |
|
{{"content:2,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}}, |
|
...] |
|
""" |
|
|
|
context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt) |
|
|
|
relevant_prompt = PromptTemplate( |
|
input_variables=["relevancy_response"], |
|
template=""" |
|
Your main task is to analyze the json structure as a part of the Relevancy Response. |
|
Review the Relevancy Response and do the following:- |
|
(1) Look at the Json Structure content |
|
(2) Analyze the 'score' key in the Json Structure content. |
|
(3) pick the value of 'content' key against those 'score' key value which has 0. |
|
|
|
Relevancy Response: |
|
{relevancy_response} |
|
|
|
Provide your verdict in JSON format with a single key 'content number' and no preamble or explanation: |
|
[{{"content":<content number>}}] |
|
""" |
|
) |
|
|
|
context_prompt = PromptTemplate( |
|
input_variables=["context_number"], |
|
template=""" |
|
You main task is to analyze the json structure as a part of the Context Number Response and the list of Contexts provided in the 'Content List' and perform the following steps:- |
|
(1) Look at the output from the Relevant Context Picker Agent. |
|
(2) Analyze the 'content' key in the Json Structure format({{"content":<<content_number>>}}). |
|
(3) Retrieve the value of 'content' key and pick up the context corresponding to that element from the Content List provided. |
|
(4) Pass the retrieved context for each corresponing element number referred in the 'Context Number Response' |
|
|
|
Context Number Response: |
|
{context_number} |
|
|
|
Content List: |
|
{context} |
|
|
|
Provide your verdict in JSON format with a two key 'relevant_content' and 'context_number' no preamble or explanation: |
|
[{{"context_number":<content1>,"relevant_content":<content corresponing to that element 1 in the Content List>}}, |
|
{{"context_number":<content4>,"relevant_content":<content corresponing to that element 4 in the Content List>}}, |
|
... |
|
] |
|
""" |
|
) |
|
|
|
rag_prompt = """ You are ahelpful assistant very profiient in formulating clear and meaningful answers from the context provided.Based on the CONTEXT Provided ,Please formulate |
|
a clear concise and meaningful answer for the QUERY asked.Please refrain from making up your own answer in case the COTEXT provided is not sufficient to answer the QUERY.In such a situation please respond as 'I do not know'. |
|
|
|
QUERY: |
|
{query} |
|
|
|
CONTEXT |
|
{context} |
|
|
|
ANSWER: |
|
""" |
|
|
|
context_relevancy_evaluation_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response") |
|
|
|
response_crisis = context_relevancy_evaluation_chain.invoke({"context":context,"retriever_query":query}) |
|
|
|
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number") |
|
|
|
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response":response_crisis['relevancy_response']}) |
|
|
|
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts") |
|
|
|
contexts = relevant_contexts_chain.invoke({"context_number":relevant_response['context_number'],"context":context}) |
|
|
|
final_prompt = PromptTemplate(input_variables=["query","context"],template=rag_prompt) |
|
|
|
response_chain = LLMChain(llm=rag_llm,prompt=final_prompt,output_key="final_response") |
|
|
|
response = response_chain.invoke({"query":query,"context":contexts['relevant_contexts']}) |
|
|
|
|
|
context_management_chain = SequentialChain( |
|
chains=[context_relevancy_evaluation_chain ,pick_relevant_context_chain, relevant_contexts_chain,response_chain], |
|
input_variables=["context","retriever_query","query"], |
|
output_variables=["relevancy_response", "context_number","relevant_contexts","final_response"] |
|
) |
|
|
|
final_output = context_management_chain({"context":context,"retriever_query":query,"query":query}) |
|
|
|
st.subheader('final_output["relevancy_response"]') |
|
st.json(final_output["relevancy_response"] ) |
|
|
|
st.subheader('final_output["context_number"]') |
|
st.json(final_output["context_number"]) |
|
|
|
st.subheader('final_output["relevant_contexts"]') |
|
st.json(final_output["relevant_contexts"]) |
|
|
|
st.subheader('final_output["final_response"]') |
|
st.json(final_output["final_response"]) |
|
|