DrishtiSharma's picture
Update app.py
072b5a9 verified
raw
history blame
7.23 kB
import os
import requests
import streamlit as st
import pickle
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
llm_judge.verbose = True
rag_llm.verbose = True
VECTOR_DB_PATH = "/tmp/chroma_db"
CHUNKS_FILE = "/tmp/chunks.pkl"
# Session State Initialization
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "documents" not in st.session_state:
st.session_state.documents = None
if "pdf_path" not in st.session_state:
st.session_state.pdf_path = None
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
st.title("Blah-2")
# Step 1: Choose PDF Source
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
if uploaded_file:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:")
if pdf_url and not st.session_state.pdf_path:
with st.spinner("Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("βœ… PDF Downloaded Successfully!")
else:
st.error("❌ Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"❌ Error downloading PDF: {e}")
# Step 2: Load & Process PDF (Only Once)
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
with st.spinner("Loading PDF..."):
try:
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
st.session_state.documents = docs
st.session_state.pdf_loaded = True
st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")
except Exception as e:
st.error(f"❌ Error processing PDF: {e}")
# Load Cached Chunks if Available
def load_chunks():
if os.path.exists(CHUNKS_FILE):
with open(CHUNKS_FILE, "rb") as f:
return pickle.load(f)
return None
if not st.session_state.chunked: # Ensure chunking only happens once
cached_chunks = load_chunks()
if cached_chunks:
st.session_state.documents = cached_chunks
st.session_state.chunked = True
# Step 3: Chunking (Only Happens Once)
if st.session_state.pdf_loaded and not st.session_state.chunked:
with st.spinner("Chunking the document..."):
try:
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
text_splitter = SemanticChunker(embedding_model)
if st.session_state.documents:
documents = text_splitter.split_documents(st.session_state.documents)
st.session_state.documents = documents
st.session_state.chunked = True
# Save chunks for persistence
with open(CHUNKS_FILE, "wb") as f:
pickle.dump(documents, f)
st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")
except Exception as e:
st.error(f"❌ Error chunking document: {e}")
# Step 4: Setup Vectorstore
def load_vector_store():
return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
if st.session_state.chunked and not st.session_state.vector_created:
with st.spinner("Creating vector store..."):
try:
if st.session_state.vector_store is None: # Prevent unnecessary reloading
st.session_state.vector_store = load_vector_store()
if len(st.session_state.vector_store.get()["documents"]) == 0: # Prevent duplicate insertions
st.session_state.vector_store.add_documents(st.session_state.documents)
num_documents = len(st.session_state.vector_store.get()["documents"])
st.session_state.vector_created = True
st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")
except Exception as e:
st.error(f"❌ Error creating vector store: {e}")
# Debugging Logs
st.write("πŸ“„ **PDF Loaded:**", st.session_state.pdf_loaded)
st.write("πŸ”Ή **Chunked:**", st.session_state.chunked)
st.write("πŸ“‚ **Vector Store Created:**", st.session_state.vector_created)
# ----------------- Query Input -----------------
if query:
with st.spinner("πŸ”„ Retrieving relevant context..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
retrieved_docs = retriever.invoke(query)
context = [d.page_content for d in retrieved_docs]
st.success("βœ… Context retrieved successfully!")
# ----------------- Run Individual Chains Explicitly -----------------
--------------------
# ----------------- Display All Outputs -----------------
st.markdown("### Context Relevancy Evaluation")
st.json(response_crisis["relevancy_response"])
st.markdown("### Picked Relevant Contexts")
st.json(relevant_response["context_number"])
st.markdown("### Extracted Relevant Contexts")
st.json(contexts["relevant_contexts"])
st.subheader("context_relevancy_evaluation_chain Statement")
st.json(final_response["relevancy_response"])
st.subheader("pick_relevant_context_chain Statement")
st.json(final_response["context_number"])
st.subheader("relevant_contexts_chain Statement")
st.json(final_response["relevant_contexts"])
st.subheader("RAG Response Statement")
st.json(final_response["final_response"])