File size: 6,277 Bytes
883b88e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import chromadb
import requests
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt
# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
llm_judge.verbose = True
rag_llm.verbose = True
# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()
st.title("Blah - 1")
# **Initialize session state variables**
if "pdf_path" not in st.session_state:
st.session_state.pdf_path = None
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
if "vector_store_path" not in st.session_state:
st.session_state.vector_store_path = "./chroma_langchain_db"
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "documents" not in st.session_state:
st.session_state.documents = None
# Step 1: Choose PDF Source
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
if uploaded_file:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:")
if pdf_url and not st.session_state.get("pdf_loaded", False):
with st.spinner("Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("β
PDF Downloaded Successfully!")
else:
st.error("β Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"Error downloading PDF: {e}")
# Step 2: Process PDF
if st.session_state.pdf_path and not st.session_state.get("pdf_loaded", False):
with st.spinner("Loading and processing PDF..."):
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
st.session_state.documents = docs
st.session_state.pdf_loaded = True # β
Prevent re-loading
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
# Step 3: Chunking
if st.session_state.get("pdf_loaded", False) and not st.session_state.get("chunked", False):
with st.spinner("Chunking the document..."):
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
text_splitter = SemanticChunker(embedding_model)
documents = text_splitter.split_documents(st.session_state.documents)
st.session_state.documents = documents # β
Store chunked docs
st.session_state.chunked = True # β
Prevent re-chunking
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
# Step 4: Setup Vectorstore
if st.session_state.get("chunked", False) and not st.session_state.get("vector_created", False):
with st.spinner("Creating vector store..."):
embedding_model = HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
vector_store = Chroma(
collection_name="deepseek_collection",
collection_metadata={"hnsw:space": "cosine"},
embedding_function=embedding_model,
persist_directory=st.session_state.vector_store_path
)
vector_store.add_documents(st.session_state.documents)
num_documents = len(vector_store.get()["documents"])
st.session_state.vector_store = vector_store
st.session_state.vector_created = True # β
Prevent re-creating vector store
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
# Step 5: Query Input
if st.session_state.get("vector_created", False) and st.session_state.get("vector_store", None):
query = st.text_input("π Enter a Query:")
if query and st.session_state.get("vector_created", False):
with st.spinner("Retrieving relevant contexts..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
contexts = retriever.invoke(query)
context_texts = [doc.page_content for doc in contexts]
st.success(f"β
**Retrieved {len(context_texts)} Contexts!**")
for i, text in enumerate(context_texts, 1):
st.write(f"**Context {i}:** {text[:500]}...")
# **Step 6: Generate Final Response**
with st.spinner("Generating the final answer..."):
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
final_response = response_chain.invoke({"query": query, "context": context_texts})
st.subheader("π₯ RAG Final Response")
st.success(final_response['final_response']) |