File size: 7,376 Bytes
2735883 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import streamlit as st
import os
import requests
import chromadb
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain, SequentialChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah", layout="wide")
st.title("Blah-1")
# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# ----------------- Ensure Vector Store Directory Exists -----------------
if not os.path.exists("./chroma_langchain_db"):
os.makedirs("./chroma_langchain_db")
# ----------------- Clear ChromaDB Cache -----------------
chromadb.api.client.SharedSystemClient.clear_system_cache()
# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
# ----------------- Load Models -------------------
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
# Enable verbose logging for debugging
llm_judge.verbose = True
rag_llm.verbose = True
# ----------------- PDF Selection (Upload or URL) -----------------
st.sidebar.subheader("π PDF Selection")
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.sidebar.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
elif pdf_source == "Enter a PDF URL":
pdf_url = st.sidebar.text_input("Enter PDF URL:")
if pdf_url and not st.session_state.pdf_loaded:
with st.spinner("π Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("β
PDF Downloaded Successfully!")
else:
st.error("β Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"Error downloading PDF: {e}")
# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
with st.spinner("π Processing document... Please wait."):
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
# Embedding Model (HF on CPU)
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
# Split into Chunks
text_splitter = SemanticChunker(embedding_model)
document_chunks = text_splitter.split_documents(docs)
# Store chunks in session state
st.session_state.processed_chunks = document_chunks
st.session_state.pdf_loaded = True
st.success("β
Document processed and chunked successfully!")
# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
with st.spinner("π Initializing Vector Store..."):
vector_store = Chroma(
collection_name="deepseek_collection",
collection_metadata={"hnsw:space": "cosine"},
embedding_function=embedding_model,
persist_directory="./chroma_langchain_db"
)
vector_store.add_documents(st.session_state.processed_chunks)
st.session_state.vector_store = vector_store
st.session_state.vector_created = True
st.success("β
Vector store initialized successfully!")
# ----------------- Query Input -----------------
query = st.text_input("π Ask a question about the document:")
if query:
with st.spinner("π Retrieving relevant context..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
retrieved_docs = retriever.invoke(query)
context = [d.page_content for d in retrieved_docs]
st.success("β
Context retrieved successfully!")
# ----------------- Full SequentialChain Execution -----------------
with st.spinner("π Running full pipeline..."):
context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt)
relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt)
context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth)
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
context_management_chain = SequentialChain(
chains=[context_relevancy_chain, relevant_context_chain, relevant_contexts_chain, response_chain],
input_variables=["context", "retriever_query", "query"],
output_variables=["relevancy_response", "context_number", "relevant_contexts", "final_response"]
)
final_output = context_management_chain.invoke({"context": context, "retriever_query": query, "query": query})
st.success("β
Full pipeline executed successfully!")
# ----------------- Display All Outputs (Formatted) -----------------
st.markdown("### π₯ Context Relevancy Evaluation")
st.json(final_output["relevancy_response"])
st.markdown("### π¦ Picked Relevant Contexts")
st.json(final_output["context_number"])
st.markdown("### π₯ Extracted Relevant Contexts")
st.json(final_output["relevant_contexts"])
st.markdown("## π₯ RAG Final Response")
st.write(final_output["final_response"])
|