Spaces:
Running
on
Zero
Running
on
Zero
Revert "Florence2ModelLoader loadmodel"
Browse filesThis reverts commit 8e59d75004da26d5e68c7a9beddfd7f891b26515.
custom_nodes/comfyui-florence2/nodes.py
CHANGED
|
@@ -198,65 +198,6 @@ class DownloadAndLoadFlorence2Lora:
|
|
| 198 |
|
| 199 |
class Florence2ModelLoader:
|
| 200 |
|
| 201 |
-
# 用下面的函数完整替换掉旧的 loadmodel 函数
|
| 202 |
-
def loadmodel(self, model, precision, attention, lora=None, convert_to_safetensors=False):
|
| 203 |
-
"""
|
| 204 |
-
一个为 Hugging Face Spaces ZeroGPU 环境重写的、稳健的 loadmodel 函数。
|
| 205 |
-
它完全移除了手动的设备管理,并使用 accelerate 库进行智能调度。
|
| 206 |
-
"""
|
| 207 |
-
# 1. 彻底删除所有手动的设备管理
|
| 208 |
-
# device = mm.get_torch_device() <-- 已删除
|
| 209 |
-
# offload_device = mm.unet_offload_device() <-- 已删除
|
| 210 |
-
|
| 211 |
-
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
|
| 212 |
-
|
| 213 |
-
model_path = self.model_paths.get(model)
|
| 214 |
-
print(f"Loading model from {model_path} using the correct Spaces method (device_map='auto').")
|
| 215 |
-
|
| 216 |
-
# 2. 保留 safetensors 转换逻辑,但修复 map_location
|
| 217 |
-
if convert_to_safetensors:
|
| 218 |
-
model_weight_path = os.path.join(model_path, 'pytorch_model.bin')
|
| 219 |
-
safetensors_weight_path = os.path.join(model_path, 'model.safetensors')
|
| 220 |
-
if os.path.exists(model_weight_path) and not os.path.exists(safetensors_weight_path):
|
| 221 |
-
print(f"Converting {model_weight_path} to {safetensors_weight_path}")
|
| 222 |
-
# 使用 "cpu" 作为 map_location 确保在任何环境下都安全
|
| 223 |
-
sd = torch.load(model_weight_path, map_location="cpu")
|
| 224 |
-
save_file(sd, safetensors_weight_path)
|
| 225 |
-
if os.path.exists(safetensors_weight_path):
|
| 226 |
-
os.remove(model_weight_path)
|
| 227 |
-
print(f"Conversion successful. Original file deleted.")
|
| 228 |
-
|
| 229 |
-
# 3. 统一使用 from_pretrained 和 device_map="auto" 加载模型
|
| 230 |
-
# 删除所有 .to(device) 调用
|
| 231 |
-
|
| 232 |
-
# 假设 Florence2ForConditionalGeneration 是你的主要模型类
|
| 233 |
-
from .modeling_florence2 import Florence2ForConditionalGeneration
|
| 234 |
-
|
| 235 |
-
print("Loading model with device_map='auto'...")
|
| 236 |
-
model_instance = Florence2ForConditionalGeneration.from_pretrained(
|
| 237 |
-
model_path,
|
| 238 |
-
attn_implementation=attention,
|
| 239 |
-
torch_dtype=dtype,
|
| 240 |
-
device_map="auto",
|
| 241 |
-
low_cpu_mem_usage=True # 强烈推荐,防止CPU内存溢出
|
| 242 |
-
)
|
| 243 |
-
print("Model loaded successfully onto meta device / CPU.")
|
| 244 |
-
|
| 245 |
-
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 246 |
-
|
| 247 |
-
if lora is not None:
|
| 248 |
-
from peft import PeftModel
|
| 249 |
-
# PEFT 会自动处理设备,无需改动
|
| 250 |
-
model_instance = PeftModel.from_pretrained(model_instance, lora, trust_remote_code=True)
|
| 251 |
-
|
| 252 |
-
florence2_model = {
|
| 253 |
-
'model': model_instance,
|
| 254 |
-
'processor': processor,
|
| 255 |
-
'dtype': dtype
|
| 256 |
-
}
|
| 257 |
-
|
| 258 |
-
return (florence2_model,) # 保持返回元组的格式
|
| 259 |
-
|
| 260 |
@classmethod
|
| 261 |
def INPUT_TYPES(s):
|
| 262 |
all_llm_paths = folder_paths.get_folder_paths("LLM")
|
|
@@ -282,50 +223,50 @@ class Florence2ModelLoader:
|
|
| 282 |
FUNCTION = "loadmodel"
|
| 283 |
CATEGORY = "Florence2"
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
|
| 328 |
-
|
| 329 |
|
| 330 |
class Florence2Run:
|
| 331 |
@classmethod
|
|
|
|
| 198 |
|
| 199 |
class Florence2ModelLoader:
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
@classmethod
|
| 202 |
def INPUT_TYPES(s):
|
| 203 |
all_llm_paths = folder_paths.get_folder_paths("LLM")
|
|
|
|
| 223 |
FUNCTION = "loadmodel"
|
| 224 |
CATEGORY = "Florence2"
|
| 225 |
|
| 226 |
+
def loadmodel(self, model, precision, attention, lora=None, convert_to_safetensors=False):
|
| 227 |
+
device = mm.get_torch_device()
|
| 228 |
+
offload_device = mm.unet_offload_device()
|
| 229 |
+
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
|
| 230 |
+
|
| 231 |
+
model_path = Florence2ModelLoader.model_paths.get(model)
|
| 232 |
+
print(f"Loading model from {model_path}")
|
| 233 |
+
print(f"Florence2 using {attention} for attention")
|
| 234 |
+
if convert_to_safetensors:
|
| 235 |
+
model_weight_path = os.path.join(model_path, 'pytorch_model.bin')
|
| 236 |
+
if os.path.exists(model_weight_path):
|
| 237 |
+
safetensors_weight_path = os.path.join(model_path, 'model.safetensors')
|
| 238 |
+
print(f"Converting {model_weight_path} to {safetensors_weight_path}")
|
| 239 |
+
if not os.path.exists(safetensors_weight_path):
|
| 240 |
+
sd = torch.load(model_weight_path, map_location=offload_device)
|
| 241 |
+
sd_new = {}
|
| 242 |
+
for k, v in sd.items():
|
| 243 |
+
sd_new[k] = v.clone()
|
| 244 |
+
save_file(sd_new, safetensors_weight_path)
|
| 245 |
+
if os.path.exists(safetensors_weight_path):
|
| 246 |
+
print(f"Conversion successful. Deleting original file: {model_weight_path}")
|
| 247 |
+
os.remove(model_weight_path)
|
| 248 |
+
print(f"Original {model_weight_path} file deleted.")
|
| 249 |
+
|
| 250 |
+
if transformers.__version__ < '4.51.0':
|
| 251 |
+
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement
|
| 252 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, attn_implementation=attention, torch_dtype=dtype,trust_remote_code=True).to(offload_device)
|
| 253 |
+
else:
|
| 254 |
+
from .modeling_florence2 import Florence2ForConditionalGeneration
|
| 255 |
+
model = Florence2ForConditionalGeneration.from_pretrained(model_path, attn_implementation=attention, torch_dtype=dtype).to(offload_device)
|
| 256 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 257 |
+
|
| 258 |
+
if lora is not None:
|
| 259 |
+
from peft import PeftModel
|
| 260 |
+
adapter_name = lora
|
| 261 |
+
model = PeftModel.from_pretrained(model, adapter_name, trust_remote_code=True)
|
| 262 |
|
| 263 |
+
florence2_model = {
|
| 264 |
+
'model': model,
|
| 265 |
+
'processor': processor,
|
| 266 |
+
'dtype': dtype
|
| 267 |
+
}
|
| 268 |
|
| 269 |
+
return (florence2_model,)
|
| 270 |
|
| 271 |
class Florence2Run:
|
| 272 |
@classmethod
|