Spaces:
Runtime error
Runtime error
| from .imagefunc import * | |
| NODE_NAME = 'BiRefNetUltra' | |
| class BiRefNetUltra: | |
| def INPUT_TYPES(cls): | |
| method_list = ['VITMatte', 'VITMatte(local)', 'PyMatting', 'GuidedFilter', ] | |
| device_list = ['cuda','cpu'] | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "detail_method": (method_list,), | |
| "detail_erode": ("INT", {"default": 6, "min": 1, "max": 255, "step": 1}), | |
| "detail_dilate": ("INT", {"default": 6, "min": 1, "max": 255, "step": 1}), | |
| "black_point": ("FLOAT", {"default": 0.01, "min": 0.01, "max": 0.98, "step": 0.01, "display": "slider"}), | |
| "white_point": ("FLOAT", {"default": 0.99, "min": 0.02, "max": 0.99, "step": 0.01, "display": "slider"}), | |
| "process_detail": ("BOOLEAN", {"default": True}), | |
| "device": (device_list,), | |
| "max_megapixels": ("FLOAT", {"default": 2.0, "min": 1, "max": 999, "step": 0.1}), | |
| }, | |
| "optional": { | |
| } | |
| } | |
| RETURN_TYPES = ("IMAGE", "MASK", ) | |
| RETURN_NAMES = ("image", "mask", ) | |
| FUNCTION = "birefnet_ultra" | |
| CATEGORY = '😺dzNodes/LayerMask' | |
| def birefnet_ultra(self, image, detail_method, detail_erode, detail_dilate, | |
| black_point, white_point, process_detail, device, max_megapixels): | |
| ret_images = [] | |
| ret_masks = [] | |
| if detail_method == 'VITMatte(local)': | |
| local_files_only = True | |
| else: | |
| local_files_only = False | |
| from .birefnet_legacy import BiRefNetRemoveBackground | |
| birefnetrmbg = BiRefNetRemoveBackground() | |
| for i in image: | |
| i = torch.unsqueeze(i, 0) | |
| orig_image = tensor2pil(i).convert('RGB') | |
| _mask = birefnetrmbg.generate_mask(orig_image) | |
| _mask = image2mask(_mask) | |
| detail_range = detail_erode + detail_dilate | |
| if process_detail: | |
| if detail_method == 'GuidedFilter': | |
| _mask = guided_filter_alpha(i, _mask, detail_range // 6 + 1) | |
| _mask = tensor2pil(histogram_remap(_mask, black_point, white_point)) | |
| elif detail_method == 'PyMatting': | |
| _mask = tensor2pil(mask_edge_detail(i, _mask, detail_range // 8 + 1, black_point, white_point)) | |
| else: | |
| _trimap = generate_VITMatte_trimap(_mask, detail_erode, detail_dilate) | |
| _mask = generate_VITMatte(orig_image, _trimap, local_files_only=local_files_only, device=device, max_megapixels=max_megapixels) | |
| _mask = tensor2pil(histogram_remap(pil2tensor(_mask), black_point, white_point)) | |
| else: | |
| _mask = tensor2pil(_mask) | |
| ret_image = RGB2RGBA(orig_image, _mask.convert('L')) | |
| ret_images.append(pil2tensor(ret_image)) | |
| ret_masks.append(image2mask(_mask)) | |
| log(f"{NODE_NAME} Processed {len(ret_masks)} image(s).", message_type='finish') | |
| return (torch.cat(ret_images, dim=0), torch.cat(ret_masks, dim=0),) | |
| NODE_CLASS_MAPPINGS = { | |
| "LayerMask: BiRefNetUltra": BiRefNetUltra, | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "LayerMask: BiRefNetUltra": "LayerMask: BiRefNetUltra", | |
| } | |