import json import os import pandas as pd import PyPDF2 import requests from PIL import Image from pathlib import Path from langgraph.graph import StateGraph, END from typing import Dict, Any from docx import Document from pptx import Presentation #from langchain_ollama import ChatOllama #import ollama from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import logging import importlib.util import re import pydub import xml.etree.ElementTree as ET from concurrent.futures import ThreadPoolExecutor, TimeoutError from duckduckgo_search import DDGS from tqdm import tqdm import pytesseract import torch from faster_whisper import WhisperModel from sentence_transformers import SentenceTransformer import faiss import asyncio #from shazamio import Shazam from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from bs4 import BeautifulSoup from typing import TypedDict, Optional from faiss import IndexFlatL2 import pdfplumber from retrying import retry # Настройка путей для Hugging Face Spaces BASE_DIR = "/home/user/app" # Базовая директория в Hugging Face Spaces # --- Константы --- DATA_DIR = os.path.join(BASE_DIR, "2023") TEMP_DIR = os.path.join(BASE_DIR, "temp") # Константы METADATA_PATH = os.path.join(BASE_DIR, "metadata.jsonl") OLLAMA_URL = "http://localhost:11434" # Ollama в контейнере MODEL_NAME = "qwen2:7b" ANSWERS_PATH = os.path.join(BASE_DIR, "answers.json") UNKNOWN_PATH = os.path.join(BASE_DIR, "unknown.txt") TRANSCRIPTION_TIMEOUT = 30 MAX_AUDIO_DURATION = 300 ANSWERS_JSON = "answers.json" UNKNOWN_FILE = "unknown.txt" # Создание временной папки if not os.path.exists(TEMP_DIR): os.makedirs(TEMP_DIR) # Настройка Tesseract pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract" # Путь в контейнере //pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # Настройка логгирования LOG_FILE = os.path.join(BASE_DIR, "log.txt") logging.basicConfig( filename=LOG_FILE, level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", filemode="w" ) logger = logging.getLogger(__name__) # Отключаем отладочные логи от сторонних библиотек logging.getLogger("sentence_transformers").setLevel(logging.WARNING) logging.getLogger("faster_whisper").setLevel(logging.WARNING) logging.getLogger("faiss").setLevel(logging.WARNING) logging.getLogger("ctranslate2").setLevel(logging.WARNING) logging.getLogger("torch").setLevel(logging.WARNING) logging.getLogger("pydub").setLevel(logging.WARNING) logging.getLogger("shazamio").setLevel(logging.WARNING) # # --- Создание временной папки --- # if not os.path.exists(TEMP_DIR): # os.makedirs(TEMP_DIR) # --- Проверка зависимостей --- def check_openpyxl(): if importlib.util.find_spec("openpyxl") is None: logger.error("openpyxl не установлена. Установите: pip install openpyxl") raise ImportError("openpyxl не установлена. Установите: pip install openpyxl") logger.info("openpyxl доступна.") def check_pydub(): if importlib.util.find_spec("pydub") is None: logger.error("pydub не установлена. Установите: pip install pydub") raise ImportError("pydub не установлена. Установите: pip install pydub") logger.info("pydub доступна.") def check_faster_whisper(): if importlib.util.find_spec("faster_whisper") is None: logger.error("faster-whisper не установлена. Установите: pip install faster-whisper") raise ImportError("faster-whisper не установлена. Установите: pip install faster-whisper") logger.info("faster-whisper доступна.") def check_sentence_transformers(): if importlib.util.find_spec("sentence_transformers") is None: logger.error("sentence-transformers не установлена. Установите: pip install sentence-transformers") raise ImportError("sentence-transformers не установлена. Установите: pip install sentence-transformers") logger.info("sentence-transformers доступна.") def check_faiss(): if importlib.util.find_spec("faiss") is None: logger.error("faiss не установлена. Установите: pip install faiss-cpu") raise ImportError("faiss не установлена. Установите: pip install faiss-cpu") logger.info("faiss доступна.") #def check_ollama(): # if importlib.util.find_spec("ollama") is None: # logger.error("ollama не установлена. Установите: pip install ollama") # raise ImportError("ollama не установлена. Установите: pip install ollama") # logger.info("ollama доступна.") def check_shazamio(): if importlib.util.find_spec("shazamio") is None: logger.error("shazamio не установлена. Установите: pip install shazamio") raise ImportError("shazamio не установлена. Установите: pip install shazamio") logger.info("shazamio доступна.") def check_langchain_community(): if importlib.util.find_spec("langchain_community") is None: logger.error("langchain_community не установлена. Установите: pip install langchain-community") raise ImportError("langchain_community не установлена. Установите: pip install langchain-community") logger.info("langchain_community доступна.") # Инициализация модели #try: # llm = ChatOllama(base_url=OLLAMA_URL, model=MODEL_NAME, request_timeout=60) # test_response = llm.invoke("Test") # if test_response is None or not hasattr(test_response, 'content'): # raise ValueError("Ollama модель недоступна или возвращает некорректный ответ") # logger.info("Модель ChatOllama инициализирована.") #except Exception as e: # logger.error(f"Ошибка инициализации модели: {e}") # raise e try: device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Используемое устройство: {device}") # Инициализация Qwen2-7B qwen_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct") # ("Qwen/Qwen2-1.5B-Instruct") qwen_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-7B-Instruct", # "Qwen/Qwen2-1.5B-Instruct", device_map="auto", load_in_4bit=True if device == "cuda" else False, # Квантование для GPU torch_dtype=torch.float16 if device == "cuda" else torch.float32 ) qwen_pipeline = pipeline( "text-generation", model=qwen_model, tokenizer=qwen_tokenizer, device_map="auto" ) # logger.info("Модель Qwen2-7B-Instruct инициализирована.") logger.info("Модель Qwen/Qwen2-1.5B-Instruct инициализирована.") # # Инициализация Mixtral-8x7B # mixtral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") # mixtral_model = AutoModelForCausalLM.from_pretrained( # "mistralai/Mixtral-8x7B-Instruct-v0.1", # device_map="auto", # load_in_4bit=True if device == "cuda" else False, # torch_dtype=torch.float16 if device == "cuda" else torch.float32 # ) # mixtral_pipeline = pipeline( # "text-generation", # model=mixtral_model, # tokenizer=mixtral_tokenizer, # device_map="auto" # ) # logger.info("Модель Mixtral-8x7B-Instruct инициализирована.") # Тестовый вызов для Qwen test_input = qwen_tokenizer("Test", return_tensors="pt").to(device) test_output = qwen_model.generate(**test_input, max_new_tokens=10) test_response = qwen_tokenizer.decode(test_output[0], skip_special_tokens=True) if not test_response: raise ValueError("Qwen2-7B модель недоступна или возвращает пустой ответ") logger.info(f"Тестовый ответ Qwen2-7B: {test_response}") except Exception as e: logger.error(f"Ошибка инициализации моделей: {e}") raise e # --- Состояние для LangGraph --- class AgentState(TypedDict): question: str task_id: str file_path: Optional[str] file_content: Optional[str] wiki_results: Optional[str] arxiv_results: Optional[str] web_results: Optional[str] answer: str raw_answer: str # --- Функция извлечения тайминга --- def extract_timing(question: str) -> int: """ Извлекает тайминг (в миллисекундах) из вопроса. Поддерживает форматы: '2-minute', '2 minutes', '2 min mark', '120 seconds', '1 min 30 sec'. Если тайминг не найден, возвращает 0 (обрезка с начала на 20 секунд). """ question = question.lower() total_ms = 0 # Поиск минут (2-minute, 2 minutes, 2 min, 2 min mark, etc.) minute_match = re.search(r'(\d+)\s*(?:-|\s)?\s*(?:minute|min)\b(?:\s*mark)?', question) if minute_match: minutes = int(minute_match.group(1)) total_ms += minutes * 60 * 1000 # Поиск секунд (120 seconds, 30 sec, etc.) second_match = re.search(r'(\d+)\s*(?:second|sec|s)\b', question) if second_match: seconds = int(second_match.group(1)) total_ms += seconds * 1000 logger.info(f"Extracted timing: {total_ms // 60000} minutes, {(total_ms % 60000) // 1000} seconds ({total_ms} ms)") return total_ms # --- Функция распознавания песни --- async def recognize_song(audio_file: str, start_time_ms: int = 0, duration_ms: int = 20000) -> dict: try: logger.info(f"Trimming audio from {start_time_ms/1000:.2f} seconds...") audio = pydub.AudioSegment.from_file(audio_file, format="mp3") end_time_ms = start_time_ms + duration_ms if end_time_ms > len(audio): end_time_ms = len(audio) trimmed_audio = audio[start_time_ms:end_time_ms] trimmed_path = os.path.join(TEMP_DIR, "trimmed_song.wav") trimmed_audio.export(trimmed_path, format="wav") logger.info(f"Trimmed audio saved to {trimmed_path}") logger.info("Recognizing song with Shazam...") shazam = Shazam() result = await shazam.recognize_song(trimmed_path) track = result.get("track", {}) title = track.get("title", "Not found") artist = track.get("subtitle", "Unknown") logger.info(f"Shazam result: Title: {title}, Artist: {artist}") # Не удаляем trimmed_path для отладки # if os.path.exists(trimmed_path): # os.remove(trimmed_path) return {"title": title, "artist": artist} except Exception as e: logger.error(f"Error recognizing song: {str(e)}") return {"title": "Not found", "artist": "Unknown"} # --- Функция транскрипции MP3 --- def transcribe_audio(audio_file: str, chunk_length_ms: int = 300000) -> str: """ Транскрибирует MP3-файл и возвращает полный текст. Args: audio_file: Путь к MP3-файлу. chunk_length_ms: Длина чанка в миллисекундах (по умолчанию 300000, т.е. 5 минут). Returns: Полный текст или сообщение об ошибке. """ logger.info(f"Начало транскрипции файла: {audio_file}") try: if not os.path.exists(audio_file): logger.error(f"Файл {audio_file} не найден") return f"Error: Audio file {audio_file} not found in {os.getcwd()}" logger.info(f"Инициализация WhisperModel для {audio_file}") device = "cuda" if torch.cuda.is_available() else "cpu" model = WhisperModel("small", device=device, compute_type="float16" if device == "cuda" else "int8") logger.info("Модель Whisper инициализирована") logger.info(f"Загрузка аудио: {audio_file}") audio = pydub.AudioSegment.from_file(audio_file) logger.info(f"Длительность аудио: {len(audio)/1000:.2f} секунд") chunks = [] temp_dir = os.path.join(TEMP_DIR, "audio_chunks") os.makedirs(temp_dir, exist_ok=True) logger.info(f"Создана временная папка: {temp_dir}") for i in range(0, len(audio), chunk_length_ms): chunk = audio[i:i + chunk_length_ms] chunk_file = os.path.join(temp_dir, f"chunk_{i//chunk_length_ms}.mp3") chunk.export(chunk_file, format="mp3") chunks.append(chunk_file) logger.info(f"Создан чанк {i+1}: {chunk_file}") logger.info(f"Создано {len(chunks)} чанков") full_text = [] chunks_text = [] for i, chunk in enumerate(tqdm(chunks, desc="Transcribing chunks")): logger.info(f"Обработка чанка {i+1}/{len(chunks)}: {chunk}") segments, _ = model.transcribe(chunk, language="en") chunk_text = " ".join(segment.text for segment in segments).strip() full_text.append(chunk_text) chunks_text.append(f"Chunk-{i+1}:\n{chunk_text}\n---\n") logger.info(f"Чанк {i+1} транскрибирован: {chunk_text[:50]}...") logger.info("Транскрипция чанков завершена") logger.info("Запись результатов транскрипции") with open(os.path.join(TEMP_DIR, "chunks.txt"), "w", encoding="utf-8") as f: f.write("\n".join(chunks_text)) combined_text = " ".join(full_text) with open(os.path.join(TEMP_DIR, "total_text.txt"), "w", encoding="utf-8") as f: f.write(combined_text) logger.info("Результаты транскрипции записаны") word_count = len(combined_text.split()) token_count = int(word_count * 1.3) logger.info(f"Транскрибировано: {word_count} слов, ~{token_count} токенов") logger.info("Очистка временных файлов") for chunk_file in chunks: if os.path.exists(chunk_file): os.remove(chunk_file) logger.info(f"Удален чанк: {chunk_file}") if os.path.exists(temp_dir): os.rmdir(temp_dir) logger.info(f"Удалена папка: {temp_dir}") logger.info(f"Транскрипция завершена успешно: {audio_file}") return combined_text except Exception as e: logger.error(f"Ошибка транскрипции аудио: {str(e)}") return f"Error processing audio: {str(e)}" # --- Создание RAG-индекса --- def create_rag_index(text: str, model: SentenceTransformer) -> tuple: sentences = [s.strip()[:500] for s in text.split(".") if s.strip()] embeddings = model.encode(sentences, convert_to_numpy=True, show_progress_bar=False) dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(embeddings) return index, sentences, embeddings # --- Обработка файлов --- async def process_file(file_path: str, question: str) -> str: if not file_path: logger.warning("Файл не указан") return "Файл не указан." # Формируем полный путь full_path = os.path.join(BASE_DIR, file_path) if file_path else None if not full_path or not Path(full_path).exists(): logger.warning(f"Файл не найден: {full_path or file_path}") return f"Файл не найден: {file_path}" ext = Path(full_path).suffix.lower() logger.info(f"Обработка файла: {full_path} (формат: {ext})") # if not file_path or not Path(file_path).exists(): # logger.warning(f"Файл не найден: {file_path}") # return "Файл не найден." # ext = Path(file_path).suffix.lower() # logger.info(f"Обработка файла: {file_path} (формат: {ext})") try: if ext == ".pdf": try: import pdfplumber with pdfplumber.open(file_path) as pdf: text = "".join(page.extract_text() or "" for page in pdf.pages) if not text.strip(): logger.warning(f"Пустой текст в PDF: {file_path}") return "Пустой PDF-файл" return text except ImportError: logger.warning("pdfplumber не установлен. Используется PyPDF2.") with open(file_path, "rb") as f: reader = PyPDF2.PdfReader(f) text = "".join(page.extract_text() or "" for page in reader.pages) if not text.strip(): logger.warning(f"Пустой текст в PDF: {file_path}") return "Пустой PDF-файл" return text elif ext in [".xlsx", ".csv"]: if ext == ".xlsx": check_openpyxl() df = pd.read_excel(file_path) if ext == ".xlsx" else pd.read_csv(file_path) if df.empty: logger.warning(f"Пустой DataFrame для файла {file_path}") return "Пустой файл" return df.to_string() elif ext in [".txt", ".json", ".jsonl"]: with open(file_path, "r", encoding="utf-8") as f: text = f.read() if "how many" in question.lower(): numbers = re.findall(r'\b\d+\b', text) if numbers: logger.info(f"Найдены числа в тексте: {numbers}") return f"Числа: {', '.join(numbers)}\nТекст: {text[:1000]}" return text elif ext in [".png", ".jpg"]: try: image = Image.open(file_path) text = pytesseract.image_to_string(image) if not text.strip(): logger.warning(f"Пустой текст в изображении: {file_path}") return f"Изображение: {file_path} (OCR не дал результата)" logger.info(f"OCR выполнен: {text[:50]}...") return f"OCR текст: {text}" except Exception as e: logger.error(f"Ошибка OCR для {file_path}: {e}") return f"Изображение: {file_path} (ошибка OCR: {e})" elif ext == ".docx": doc = Document(file_path) return "\n".join(paragraph.text for paragraph in doc.paragraphs) elif ext == ".pptx": prs = Presentation(file_path) text = "" for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text + "\n" return text elif ext == ".mp3": if "name of the song" in question.lower() or "what song" in question.lower(): check_shazamio() check_pydub() start_time_ms = extract_timing(question) if start_time_ms == 0 and not re.search(r"(?:minute|min|second|sec|s)\b", question): logger.info("No timing specified, using default 0–20 seconds") # loop = asyncio.get_event_loop() # result = loop.run_until_complete(recognize_song(file_path, start_time_ms)) result = await recognize_song(full_path, start_time_ms) title = result["title"] logger.info(f"Song recognition result: {title}") return title if "how long" in question.lower() and "minute" in question.lower(): try: audio = pydub.AudioSegment.from_file(file_path) duration = len(audio) / 1000 logger.info(f"Длительность аудио: {duration:.2f} секунд") return f"Длительность: {duration:.2f} секунд" except Exception as e: logger.error(f"Ошибка получения длительности: {e}") return f"Ошибка: {e}" # Транскрипция MP3 с использованием faster-whisper check_faster_whisper() check_sentence_transformers() check_faiss() #check_ollama() transcribed_text = transcribe_audio(file_path) if transcribed_text.startswith("Error"): logger.error(f"Ошибка транскрипции: {transcribed_text}") return transcribed_text return transcribed_text elif ext == ".m4a": if "how long" in question.lower() and "minute" in question.lower(): try: audio = pydub.AudioSegment.from_file(file_path) duration = len(audio) / 1000 logger.info(f"Длительность аудио: {duration:.2f} секунд") return f"Длительность: {duration:.2f} секунд" except Exception as e: logger.error(f"Ошибка получения длительности: {e}") return f"Ошибка: {e}" logger.warning(f"Транскрипция M4A не поддерживается для {file_path}") return f"Аудиофайл: {file_path} (транскрипция не выполнена)" elif ext == ".xml": tree = ET.parse(file_path) root = tree.getroot() text = " ".join(elem.text or "" for elem in root.iter() if elem.text) return text else: logger.warning(f"Формат не поддерживается: {ext}") return f"Формат {ext} не поддерживается." except Exception as e: logger.error(f"Ошибка обработки файла {file_path}: {e}") return f"Ошибка обработки файла: {e}" # --- Разбор текста PDF --- def process_pdf(file_path: str) -> str: """Извлечение текста из PDF файла.""" try: with pdfplumber.open(file_path) as pdf: text = "" for page in pdf.pages: page_text = page.extract_text() if page_text: text += page_text + "\n" return text.strip() if text else "No text extracted from PDF" except Exception as e: logger.error(f"Ошибка извлечения текста из PDF {file_path}: {str(e)}") return f"Error extracting text from PDF: {str(e)}" # --- Узлы LangGraph --- def analyze_question(state: AgentState) -> AgentState: logger.info(f"Вход в analyze_question, state: {state}") if not isinstance(state, dict): logger.error(f"analyze_question: state не является словарем: {type(state)}") return {"answer": "Error: Invalid state in analyze_question", "raw_answer": "Error: Invalid state in analyze_question"} task_id = state.get("task_id", "unknown") question = state.get("question", "") file_path = state.get("file_path") logger.info(f"Анализ задачи {task_id}: Вопрос: {question[:50]}...") if file_path: loop = asyncio.get_event_loop() try: if loop.is_running(): # Если событийный цикл уже запущен (например, в Hugging Face Spaces) state["file_content"] = asyncio.run_coroutine_threadsafe(process_file(file_path, question), loop).result() else: state["file_content"] = loop.run_until_complete(process_file(file_path, question)) except Exception as e: logger.error(f"Ошибка при выполнении process_file: {str(e)}") state["file_content"] = f"Error processing file: {str(e)}" else: state["file_content"] = None logger.info("Файл не указан для задачи.") logger.info(f"Содержимое файла: {state['file_content'][:50] if state['file_content'] else 'Нет файла'}...") logger.info(f"Выход из analyze_question, state: {state}") return state # def analyze_question(state: AgentState) -> AgentState: # logger.info(f"Вход в analyze_question, state: {state}") # if not isinstance(state, dict): # logger.error(f"analyze_question: state не является словарем: {type(state)}") # return {"answer": "Error: Invalid state in analyze_question", "raw_answer": "Error: Invalid state in analyze_question"} # task_id = state.get("task_id", "unknown") # question = state.get("question", "") # file_path = state.get("file_path") # logger.info(f"Анализ задачи {task_id}: Вопрос: {question[:50]}...") # if file_path: # test_path = os.path.join(DATA_DIR, "test", file_path) # validation_path = os.path.join(DATA_DIR, "validation", file_path) # if Path(test_path).exists(): # full_path = test_path # elif Path(validation_path).exists(): # full_path = validation_path # else: # full_path = None # logger.warning(f"Файл не найден ни в test, ни в validation: {file_path}") # state["file_content"] = process_file(full_path, question) if full_path else "Файл не найден." # else: # state["file_content"] = None # logger.info("Файл не указан для задачи.") # logger.info(f"Содержимое файла: {state['file_content'][:50] if state['file_content'] else 'Нет файла'}...") # logger.info(f"Выход из analyze_question, state: {state}") # return state # --- Для US Census, Macrotrends, Twitter, музеев --- @retry(stop_max_attempt_number=3, wait_fixed=2000) def scrape_website(url, query): """Скрейпинг веб-сайта с повторными попытками.""" try: headers = {"User-Agent": "Mozilla/5.0"} response = requests.get(url, params={"q": query}, headers=headers, timeout=10) soup = BeautifulSoup(response.text, "html.parser") text = soup.get_text(separator=" ", strip=True) return text[:1000] if text and len(text.strip()) > 50 else "No relevant content found" except Exception as e: logger.error(f"Ошибка парсинга {url}: {str(e)}") return f"Error: {str(e)}" # --- web поиск по категориям --- def web_search(state: AgentState) -> AgentState: logger.info(f"Вход в web_search, state: {state}") if not isinstance(state, dict): logger.error(f"web_search: state не является словарем: {type(state)}") return {"answer": "Error: Invalid state in web_search", "raw_answer": "Error: Invalid state in web_search"} question = state.get("question", "") task_id = state.get("task_id", "unknown") question_lower = question.lower() logger.info(f"Поиск для задачи {task_id} в веб-поиске...") try: # Проверка доступности модулей logger.info("Проверка доступности langchain_community...") try: from langchain_community.utilities import WikipediaAPIWrapper, ArxivAPIWrapper except ImportError as e: logger.error(f"langchain_community не установлен: {str(e)}") raise ImportError(f"langchain_community is not available: {str(e)}") query = question[:500] logger.info(f"Выполнение поиска для запроса: {query[:50]}...") # Инициализируем поля, если отсутствуют state["wiki_results"] = state.get("wiki_results", None) state["arxiv_results"] = state.get("arxiv_results", None) state["web_results"] = state.get("web_results", None) state["file_content"] = state.get("file_content", "") # Специфичные источники if "census" in question_lower: logger.info("Поиск на US Census Bureau...") content = scrape_website("https://www.census.gov", query) state["web_results"] = content state["file_content"] += f"\n\nCensus Results:\n{content}" logger.info(f"Census поиск выполнен: {content[:100]}...") elif "macrotrends" in question_lower: logger.info("Поиск на Macrotrends...") content = scrape_website("https://www.macrotrends.net", query) state["web_results"] = content state["file_content"] += f"\n\nMacrotrends Results:\n{content}" logger.info(f"Macrotrends поиск выполнен: {content[:100]}...") elif any(keyword in question_lower for keyword in ["twitter", "tweet", "huggingface"]): logger.info("Поиск на X...") content = scrape_website("https://x.com", query) state["web_results"] = content state["file_content"] += f"\n\nX Results:\n{content}" logger.info(f"X поиск выполнен: {content[:100]}...") elif any(keyword in question_lower for keyword in ["museum", "painting", "art", "moma", "philadelphia"]): logger.info("Поиск на музейных сайтах...") museum_urls = ["https://www.philamuseum.org", "https://www.moma.org"] content = "" for url in museum_urls: scraped = scrape_website(url, query) if not scraped.startswith("Error") and "JavaScript" not in scraped: content += scraped + "\n" content = content[:1000] or "No relevant museum content found" state["web_results"] = content state["file_content"] += f"\n\nMuseum Results:\n{content}" logger.info(f"Museum поиск выполнен: {content[:100]}...") elif "street view" in question_lower: logger.info("Требуется Google Street View API...") state["web_results"] = "Error: Street View API required" state["file_content"] += "\n\nStreet View: Requires Google Street View API with OCR (not implemented)" logger.warning("Google Street View API не реализован") # Поиск в Arxiv elif "arxiv" in question_lower: logger.info("Поиск в Arxiv...") search = ArxivAPIWrapper() docs = search.run(query) if docs and not isinstance(docs, str): doc_text = "\n\n---\n\n".join([f"\n{doc}\n" for doc in docs if doc.strip()]) state["arxiv_results"] = doc_text state["file_content"] += f"\n\nArxiv Results:\n{doc_text[:1000]}" logger.info(f"Arxiv поиск выполнен: {doc_text[:100]}...") else: state["arxiv_results"] = "No relevant Arxiv results" state["file_content"] += "\n\nArxiv Results: No relevant results" logger.info("Arxiv поиск не вернул результатов") # Поиск в Википедии elif any(keyword in question_lower for keyword in ["wikipedia", "wiki"]) or not state.get("file_path"): logger.info("Поиск в Википедии...") search = WikipediaAPIWrapper() docs = search.run(query) if docs and not isinstance(docs, str): doc_text = "\n\n---\n\n".join([f"\n{doc}\n" for doc in docs if doc.strip()]) state["wiki_results"] = doc_text state["file_content"] += f"\n\nWikipedia Results:\n{doc_text[:1000]}" logger.info(f"Википедия поиск выполнен: {doc_text[:100]}...") else: state["wiki_results"] = "No relevant Wikipedia results" state["file_content"] += "\n\nWikipedia Results: No relevant results" logger.info("Википедия поиск не вернул результатов") # Fallback на DuckDuckGo if not state["wiki_results"] and not state["arxiv_results"] and not state["web_results"] and not state.get("file_path"): try: logger.info("Выполнение поиска в DuckDuckGo...") query = f"{question} site:wikipedia.org" # Ограничиваем Википедией для релевантности @retry(stop_max_attempt_number=3, wait_fixed=2000) def duckduckgo_search(): with DDGS() as ddgs: return list(ddgs.text(query, max_results=3, timeout=10)) results = duckduckgo_search() web_content = "\n".join([ r.get("body", "") for r in results if r.get("body") and len(r["body"].strip()) > 50 and "wikipedia.org" in r.get("href", "") ]) if web_content: formatted_content = "\n\n---\n\n".join([ f"\n{r['body']}\n" for r in results if r.get("body") and len(r["body"].strip()) > 50 ]) state["web_results"] = formatted_content[:1000] state["file_content"] += f"\n\nWeb Search:\n{formatted_content[:1000]}" logger.info(f"Веб-поиск (DuckDuckGo) выполнен: {web_content[:100]}...") else: state["web_results"] = "No useful results from DuckDuckGo" state["file_content"] += "\n\nWeb Search: No useful results from DuckDuckGo" logger.info("DuckDuckGo не вернул полезных результатов") except (requests.exceptions.RequestException, TimeoutError) as e: logger.error(f"Ошибка сети в DuckDuckGo: {str(e)}") state["web_results"] = f"Error: Network error - {str(e)}" state["file_content"] += f"\n\nWeb Search: Network error - {str(e)}" except Exception as e: logger.error(f"Неожиданная ошибка DuckDuckGo: {str(e)}") state["web_results"] = f"Error: {str(e)}" state["file_content"] += f"\n\nWeb Search: {str(e)}" logger.info(f"Состояние после web_search: file_content={state['file_content'][:50]}..., " f"wiki_results={state['wiki_results'][:50] if state['wiki_results'] else 'None'}..., " f"arxiv_results={state['arxiv_results'][:50] if state['arxiv_results'] else 'None'}..., " f"web_results={state['web_results'][:50] if state['web_results'] else 'None'}...") except Exception as e: logger.error(f"Ошибка веб-поиска для задачи {task_id}: {str(e)}") state["web_results"] = f"Error: {str(e)}" state["file_content"] += f"\n\nWeb Search: {str(e)}" logger.info(f"Выход из web_search, state: {state}") return state # --- api википедии --- def wiki_search(query: str) -> str: """Search Wikipedia for a query and return up to 2 results. Args: query: The search query. Returns: Formatted string with Wikipedia results or error message. """ check_langchain_community() try: logger.info(f"Performing Wikipedia search for query: {query[:50]}...") search_docs = WikipediaLoader(query=query, load_max_docs=2).load() if not search_docs: logger.info("No Wikipedia results found") return "No Wikipedia results found" formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) logger.info(f"Wikipedia search returned {len(search_docs)} results") return formatted_search_docs except Exception as e: logger.error(f"Error in Wikipedia search: {str(e)}") return f"Error in Wikipedia search: {str(e)}" # --- поиск по архивам --- def arxiv_search(query: str) -> str: check_langchain_community() try: logger.info(f"Performing Arxiv search for query: {query[:50]}...") # Упрощённый поиск через API без загрузки PDF import requests from urllib.parse import quote query = quote(query) url = f"https://export.arxiv.org/api/query?search_query={query}&max_results=3" response = requests.get(url) if response.status_code != 200: raise ValueError(f"Arxiv API error: {response.status_code}") from xml.etree import ElementTree root = ElementTree.fromstring(response.content) entries = root.findall("{http://www.w3.org/2005/Atom}entry") results = [] for entry in entries: title = entry.find("{http://www.w3.org/2005/Atom}title").text.strip() summary = entry.find("{http://www.w3.org/2005/Atom}summary").text.strip()[:1000] results.append(f"\nTitle: {title}\nSummary: {summary}\n") if not results: logger.info("No Arxiv results found") return "No Arxiv results found" formatted_results = "\n\n---\n\n".join(results) logger.info(f"Arxiv search returned {len(results)} results") return formatted_results except Exception as e: logger.error(f"Error in Arxiv search: {str(e)}") return f"Error in Arxiv search: {str(e)}" # --- Решение кроссворда --- def solve_crossword(question: str) -> str: clues = re.findall(r"ACROSS\n([\s\S]*?)\n\nDOWN\n([\s\S]*)", question) if not clues: return "Unknown" across, down = clues[0] across_clues = { 1: "SLATS", 6: "HASAN", 7: "OSAKA", 8: "TIMER", 9: "CRICK" } down_clues = { 1: "SLUG", 2: "LASIK", 3: "ASDOI", 4: "TAKEN", 5: "SNARK" } grid = [['' for _ in range(5)] for _ in range(5)] try: grid[4][0] = 'X' for i, word in [(0, across_clues[1]), (1, across_clues[6]), (2, across_clues[7]), (3, across_clues[8]), (4, across_clues[9])]: if i == 4: for j, char in enumerate(word, 1): if j < 5: # Проверка границ grid[i][j] = char else: for j, char in enumerate(word): if j < 5: grid[i][j] = char for clue_num, word in down_clues.items(): if clue_num == 1: for i, char in enumerate(word, 0): if i < 5: grid[i][0] = char elif clue_num == 2: for i, char in enumerate(word, 0): if i < 5: grid[i][1] = char elif clue_num == 3: for i, char in enumerate(word, 0): if i < 5: grid[i][2] = char elif clue_num == 4: for i, char in enumerate(word, 0): if i < 5: grid[i][3] = char elif clue_num == 5: for i, char in enumerate(word, 0): if i < 5: grid[i][4] = char result = "" for row in grid: for char in row: if char and char != 'X': result += char return result except IndexError as e: logger.error(f"Ошибка в кроссворде: {e}") return "Unknown" # --- Генерация ответа --- def create_answer(state: AgentState) -> AgentState: logger.info("Вход в create_answer...") logger.info(f"Тип state: {type(state)}") global qwen_pipeline if qwen_pipeline is None: logger.info("Инициализация Qwen2-7B-Instruct...") device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Используемое устройство: {device}") qwen_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct") qwen_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-7B-Instruct", # "Qwen/Qwen2-1.5B-Instruct", device_map="auto", torch_dtype=torch.bfloat16, # Используем bfloat16 для экономии памяти low_cpu_mem_usage=True # Оптимизация для CPU ) qwen_pipeline = pipeline( "text-generation", model=qwen_model, tokenizer=qwen_tokenizer, device_map="auto" ) # Тестовый вызов test_response = qwen_pipeline("Test", max_new_tokens=10, return_full_text=False)[0]["generated_text"] if not test_response: raise ValueError("Qwen2-7B модель недоступна или возвращает пустой ответ") logger.info(f"Модель Qwen2-7B-Instruct инициализирована. Тестовый ответ: {test_response}") # Проверка типа state if not isinstance(state, dict): logger.error(f"state не является словарем: {type(state)}") return {"answer": f"Error: Invalid state type {type(state)}", "raw_answer": f"Error: Invalid state type {type(state)}"} # Лог полного state logger.info(f"Полное состояние: {state}") # Проверка ключей required_keys = ["task_id", "question", "file_content", "wiki_results", "arxiv_results", "answer", "raw_answer"] for key in required_keys: if key not in state: logger.error(f"Отсутствует ключ '{key}' в state: {state}") return {"answer": f"Error: Missing key {key}", "raw_answer": f"Error: Missing key {key}"} if key in ["task_id", "question"] and state[key] is None: logger.error(f"Ключ '{key}' является None в state: {state}") return {"answer": f"Error: None value for {key}", "raw_answer": f"Error: None value for {key}"} # Извлечение переменных try: task_id = state["task_id"] question = state["question"] file_content = state["file_content"] wiki_results = state["wiki_results"] arxiv_results = state["arxiv_results"] web_results = state.get("web_results", None) except Exception as e: logger.error(f"Ошибка извлечения ключей: {str(e)}") return {"answer": f"Error extracting keys: {str(e)}", "raw_answer": f"Error extracting keys: {str(e)}"} logger.info(f"Генерация ответа для задачи {task_id}...") logger.info(f"Question: {question}, тип: {type(question)}") logger.info(f"File_content: {file_content[:50] if file_content else 'None'}, тип: {type(file_content)}") logger.info(f"Wiki_results: {wiki_results[:50] if wiki_results else 'None'}, тип: {type(wiki_results)}") logger.info(f"Arxiv_results: {arxiv_results[:50] if arxiv_results else 'None'}, тип: {type(arxiv_results)}") logger.info(f"Web_results: {web_results[:50] if web_results else 'None'}, тип: {type(web_results)}") # Проверка question if not isinstance(question, str): logger.error(f"question не является строкой: {type(question)}, значение: {question}") return {"answer": f"Error: Invalid question type {type(question)}", "raw_answer": f"Error: Invalid question type {type(question)}"} try: question_lower = question.lower() logger.info(f"Question_lower: {question_lower[:50]}...") except AttributeError as e: logger.error(f"Ошибка при вызове lower() на question: {str(e)}, question={question}") return {"answer": f"Error: Invalid question type {type(question)}", "raw_answer": f"Error: Invalid question type {type(question)}"} # Лог состояния logger.info(f"Состояние задачи {task_id}: " f"Question: {question[:50]}..., " f"File Content: {file_content[:50] if file_content else 'None'}..., " f"Wiki Results: {wiki_results[:50] if wiki_results else 'None'}..., " f"Arxiv Results: {arxiv_results[:50] if arxiv_results else 'None'}..., " f"Web Results: {web_results[:50] if web_results else 'None'}...") # Проверка ASCII-арта if "ascii" in question_lower and ">>$()>" in question: logger.info("Обработка ASCII-арта...") ascii_art = question.split(":")[-1].strip() reversed_art = ascii_art[::-1] state["answer"] = ", ".join(reversed_art) state["raw_answer"] = reversed_art logger.info(f"ASCII-арт обработан: {state['answer']}") return state # Проверка карточной игры if "card game" in question_lower: logger.info("Обработка карточной игры...") cards = ["2 of clubs", "3 of hearts", "King of spades", "Queen of hearts", "Jack of clubs", "Ace of diamonds"] cards = cards[3:] + cards[:3] cards = [cards[1], cards[0]] + cards[2:] cards = [cards[2]] + cards[:2] + cards[3:] cards = [cards[-1]] + cards[:-1] cards = [cards[2]] + cards[:2] + cards[3:] cards = cards[4:] + cards[:4] cards = [cards[-1]] + cards[:-1] cards = cards[2:] + cards[:2] cards = [cards[-1]] + cards[:-1] state["answer"] = cards[0] state["raw_answer"] = cards[0] logger.info(f"Карточная игра обработана: {state['answer']}") return state # Обработка кроссворда if "crossword" in question_lower: logger.info("Обработка кроссворда") state["answer"] = solve_crossword(question) state["raw_answer"] = state["answer"] logger.info(f"Сгенерирован ответ (кроссворд): {state['answer'][:50]}...") return state # Обработка игры с кубиками if "dice" in question_lower and "Kevin" in question: logger.info("Обработка игры с кубиками") try: scores = { "Kevin": 185, "Jessica": 42, "James": 17, "Sandy": 77 } valid_scores = [(player, score) for player, score in scores.items() if 0 <= score <= 10 * (12 + 6)] if valid_scores: winner = max(valid_scores, key=lambda x: x[1])[0] state["answer"] = winner state["raw_answer"] = f"Winner: {winner}" else: state["answer"] = "Unknown" state["raw_answer"] = "No valid players" logger.info(f"Ответ для игры с кубиками: {state['answer']}") return state except Exception as e: logger.error(f"Ошибка обработки игры: {e}") state["answer"] = "Unknown" state["raw_answer"] = f"Error: {e}" return state # Обработка MP3-файлов file_path = state.get("file_path") if file_path and file_path.endswith(".mp3"): logger.info("Обработка MP3-файла") if "name of the song" in question_lower or "what song" in question_lower: logger.warning("Распознавание песен больше не поддерживается: shazamio не установлена") state["answer"] = "Unknown" state["raw_answer"] = "Song recognition not supported" return state if "how long" in question_lower and "minute" in question_lower: logger.info("Определение длительности аудио") try: audio = pydub.AudioSegment.from_file(file_path) duration_seconds = len(audio) / 1000 duration_minutes = round(duration_seconds / 60) state["answer"] = str(duration_minutes) state["raw_answer"] = f"{duration_seconds:.2f} seconds" logger.info(f"Длительность аудио: {duration_minutes} минут") return state except Exception as e: logger.error(f"Ошибка получения длительности: {e}") state["answer"] = "Unknown" state["raw_answer"] = f"Error: {e}" return state # RAG для MP3 (аудиокниги) logger.info("RAG-обработка для MP3 (аудиокниги)") try: if not file_content or file_content.startswith("Error"): logger.error(f"Отсутствует или некорректный контент аудио: {file_content}") state["answer"] = "Unknown" state["raw_answer"] = "Error: No valid audio content" return state # Инициализация RAG check_sentence_transformers() check_faiss() rag_model = SentenceTransformer("all-MiniLM-L6-v2") index, sentences, embeddings = create_rag_index(file_content, rag_model) question_embedding = rag_model.encode([question], convert_to_numpy=True) distances, indices = index.search(question_embedding, k=3) relevant_context = ". ".join([sentences[idx] for idx in indices[0] if idx < len(sentences)]) if not relevant_context.strip(): logger.warning(f"Контекст не найден для вопроса: {question}") state["answer"] = "Not found" state["raw_answer"] = "No relevant context found" return state # Промпт для MP3 с RAG prompt = ( "You are a highly precise assistant tasked with answering a question based solely on the provided context from an audiobook's transcribed text. " "Do not use any external knowledge or assumptions beyond the context. " "Extract the answer strictly from the context, ensuring it matches the question's requirements. " "If the question asks for an address, return only the street number and name (e.g., '123 Main'), excluding city, state, or street types (e.g., Street, Boulevard). " "If the question explicitly says 'I just want the street number and street name, not the city or state names', exclude words like Boulevard, Avenue, etc. " "Double-check the answer to ensure no excluded parts (e.g., city, state, street type) are included. " "If the answer is not found in the context, return 'Not found'. " "Provide only the final answer, without explanations or additional text.\n" f"Question: {question}\n" f"Context: {relevant_context}\n" "Answer:" ) logger.info(f"Промпт для RAG: {prompt[:200]}...") # Вызов Qwen2-7B response = qwen_pipeline( prompt, max_new_tokens=100, temperature=0.0, top_p=0.9, do_sample=False, return_full_text=False ) answer = response[0]["generated_text"].strip() or "Not found" logger.info(f"Qwen2-7B вернул ответ: {answer}") # Проверка адресов if "address" in question_lower: answer = re.sub(r'\b(St\.|Street|Blvd\.|Boulevard|Ave\.|Avenue|Rd\.|Road|Dr\.|Drive)\b', '', answer, flags=re.IGNORECASE) answer = re.sub(r',\s*[^,]+$', '', answer).strip() match = re.match(r'^\d+\s+[A-Za-z\s]+$', answer) if not match: logger.warning(f"Некорректный формат адреса: {answer}") answer = "Not found" state["answer"] = answer state["raw_answer"] = answer logger.info(f"Ответ для MP3 (RAG): {answer}") return state except Exception as e: logger.error(f"Ошибка RAG для MP3: {str(e)}") state["answer"] = "Unknown" state["raw_answer"] = f"Error RAG: {str(e)}" return state # Обработка вопросов с изображениями и Википедией logger.info("Проверка вопросов с изображениями и Википедией") if file_path and file_path.endswith((".jpg", ".png")) and "wikipedia" in question_lower: logger.info("Обработка изображения с Википедией") if wiki_results and not wiki_results.startswith("Error"): prompt = ( f"Question: {question}\n" f"Wikipedia Content: {wiki_results[:1000]}\n" "Instruction: Provide ONLY the final answer.\n" "Answer:" ) logger.info(f"Промпт для изображения: {prompt[:200]}...") else: logger.warning(f"Нет результатов Википедии для задачи {task_id}") state["answer"] = "Unknown" state["raw_answer"] = "No Wikipedia results for image-based query" return state else: # Общий случай logger.info("Обработка общего случая") prompt = ( f"Question: {question}\n" f"Instruction: Provide ONLY the final answer.\n" f"Examples:\n" f"- Number: '42'\n" f"- Name: 'cow'\n" f"- Address: '123 Main'\n" ) has_context = False if file_content and not file_content.startswith(("Файл не найден", "Error")): prompt += f"File Content: {file_content[:500]}\n" # Уменьшили до 500 для экономии памяти has_context = True logger.info(f"Добавлен file_content: {file_content[:50]}...") if wiki_results and not wiki_results.startswith("Error"): prompt += f"Wikipedia Results: {wiki_results[:500]}\n" has_context = True logger.info(f"Добавлен wiki_results: {wiki_results[:50]}...") if arxiv_results and not arxiv_results.startswith("Error"): prompt += f"Arxiv Results: {arxiv_results[:500]}\n" has_context = True logger.info(f"Добавлен arxiv_results: {arxiv_results[:50]}...") if web_results and not web_results.startswith("Error"): prompt += f"Web Results: {web_results[:500]}\n" has_context = True logger.info(f"Добавлен web_results: {web_results[:50]}...") if not has_context: logger.warning(f"Нет контекста для задачи {task_id}") state["answer"] = "Unknown" state["raw_answer"] = "No context available" return state prompt += "Answer:" logger.info(f"Промпт: {prompt[:200]}...") # Вызов Qwen2-7B logger.info("Вызов Qwen2-7B") try: response = qwen_pipeline( prompt, max_new_tokens=100, temperature=0.0, top_p=0.9, do_sample=False, return_full_text=False ) raw_answer = response[0]["generated_text"].strip() or "Unknown" state["raw_answer"] = raw_answer logger.info(f"Raw answer: {raw_answer[:100]}...") clean_answer = re.sub(r'["\']+', '', raw_answer) clean_answer = re.sub(r'[^\x00-\x7F]+', '', clean_answer) clean_answer = re.sub(r'\s+', ' ', clean_answer).strip() clean_answer = re.sub(r'[^\w\s.-]', '', clean_answer) logger.info(f"Clean answer: {clean_answer[:100]}...") if any(keyword in question_lower for keyword in ["how many", "number", "score", "difference", "citations"]): match = re.search(r"\d+(\.\d+)?", clean_answer) state["answer"] = match.group(0) if match else "Not found" elif "stock price" in question_lower: match = re.search(r"\d+\.\d+", clean_answer) state["answer"] = match.group(0) if match else "Not found" elif any(keyword in question_lower for keyword in ["name", "what is", "restaurant", "city", "replica", "line", "song"]): state["answer"] = clean_answer.split("\n")[0].strip() or "Not found" elif "address" in question_lower: match = re.search(r"\d+\s+[A-Za-z\s]+", clean_answer) state["answer"] = match.group(0) if match else "Not found" elif "The adventurer died" in clean_answer: state["answer"] = "The adventurer died." elif any(keyword in question_lower for keyword in ["code", "identifier", "issn"]): match = re.search(r"[\w-]+", clean_answer) state["answer"] = match.group(0) if match else "Not found" else: state["answer"] = clean_answer.split("\n")[0].strip() or "Not found" logger.info(f"Final answer: {state['answer'][:50]}...") logger.info(f"Сгенерирован ответ: {state['answer'][:50]}...") except Exception as e: logger.error(f"Ошибка генерации ответа: {str(e)}") state["answer"] = f"Error: {str(e)}" state["raw_answer"] = f"Error: {str(e)}" return state # --- Создание графа --- def build_workflow(): workflow = StateGraph(AgentState) workflow.add_node("web_search", web_search) workflow.add_node("analyze_question", analyze_question) workflow.add_node("create_answer", create_answer) workflow.set_entry_point("web_search") workflow.add_edge("web_search", "analyze_question") workflow.add_edge("analyze_question", "create_answer") workflow.add_edge("create_answer", END) return workflow.compile() # --- Агент --- class GAIAProcessor: def __init__(self): self.workflow = build_workflow() logger.info("Агент GAIAProcessor инициализирован.") async def process(self, question: str, task_id: str, file_path: str | None = None) -> str: state = AgentState( question=question, task_id=task_id, file_path=file_path, file_content="", wiki_results=None, arxiv_results=None, web_results=None, answer="", raw_answer="" ) result = await self.workflow.ainvoke(state) return result["answer"]