""" E2E tests for lora llama """ import logging import os import unittest from pathlib import Path import pytest from axolotl.cli import load_rl_datasets from axolotl.common.cli import TrainerCliArgs from axolotl.train import train from axolotl.utils.config import normalize_config from axolotl.utils.dict import DictDefault from .utils import with_temp_dir LOG = logging.getLogger("axolotl.tests.e2e") os.environ["WANDB_DISABLED"] = "true" class TestDPOLlamaLora(unittest.TestCase): """ Test case for DPO Llama models using LoRA """ @with_temp_dir def test_dpo_lora(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "load_in_8bit": True, "adapter": "lora", "lora_r": 64, "lora_alpha": 32, "lora_dropout": 0.1, "lora_target_linear": True, "special_tokens": {}, "rl": "dpo", "datasets": [ { "path": "arcee-ai/distilabel-intel-orca-dpo-pairs-binarized", "type": "chatml.ultra", "split": "train", }, ], "num_epochs": 1, "micro_batch_size": 4, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "paged_adamw_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "warmup_steps": 5, "gradient_checkpointing": True, "gradient_checkpointing_kwargs": {"use_reentrant": True}, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists() @with_temp_dir def test_dpo_nll_lora(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "load_in_8bit": True, "adapter": "lora", "lora_r": 64, "lora_alpha": 32, "lora_dropout": 0.1, "lora_target_linear": True, "special_tokens": {}, "rl": "dpo", "rpo_alpha": 0.5, "datasets": [ { "path": "arcee-ai/distilabel-intel-orca-dpo-pairs-binarized", "type": "chatml.ultra", "split": "train", }, ], "num_epochs": 1, "micro_batch_size": 4, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "paged_adamw_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "warmup_steps": 5, "gradient_checkpointing": True, "gradient_checkpointing_kwargs": {"use_reentrant": True}, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists() @with_temp_dir def test_kto_pair_lora(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "load_in_8bit": True, "adapter": "lora", "lora_r": 64, "lora_alpha": 32, "lora_dropout": 0.1, "lora_target_linear": True, "special_tokens": {}, "rl": "kto_pair", "datasets": [ { "path": "arcee-ai/distilabel-intel-orca-dpo-pairs-binarized", "type": "chatml.ultra", "split": "train", }, ], "num_epochs": 1, "micro_batch_size": 4, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "paged_adamw_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "warmup_steps": 5, "gradient_checkpointing": True, "gradient_checkpointing_kwargs": {"use_reentrant": True}, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists() @with_temp_dir def test_ipo_lora(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "load_in_8bit": True, "adapter": "lora", "lora_r": 64, "lora_alpha": 32, "lora_dropout": 0.1, "lora_target_linear": True, "special_tokens": {}, "rl": "ipo", "datasets": [ { "path": "arcee-ai/distilabel-intel-orca-dpo-pairs-binarized", "type": "chatml.ultra", "split": "train", }, ], "num_epochs": 1, "micro_batch_size": 4, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "paged_adamw_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "warmup_steps": 5, "gradient_checkpointing": True, "gradient_checkpointing_kwargs": {"use_reentrant": True}, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists() @with_temp_dir def test_orpo_lora(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "load_in_8bit": True, "adapter": "lora", "lora_r": 64, "lora_alpha": 32, "lora_dropout": 0.1, "lora_target_linear": True, "special_tokens": {}, "rl": "orpo", "orpo_alpha": 0.1, "remove_unused_columns": False, "chat_template": "chatml", "datasets": [ { "path": "argilla/distilabel-capybara-dpo-7k-binarized", "type": "chat_template.argilla", "split": "train", }, ], "num_epochs": 1, "micro_batch_size": 4, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "paged_adamw_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "warmup_steps": 5, "gradient_checkpointing": True, "gradient_checkpointing_kwargs": {"use_reentrant": True}, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists() @pytest.mark.skip(reason="Fix the implementation") @with_temp_dir def test_kto_lora(self, temp_dir): # pylint: disable=duplicate-code cfg = DictDefault( { "base_model": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "load_in_8bit": True, "adapter": "lora", "lora_r": 64, "lora_alpha": 32, "lora_dropout": 0.1, "lora_target_linear": True, "special_tokens": {}, "rl": "kto", "rl_beta": 0.5, "kto_desirable_weight": 1.0, "kto_undesirable_weight": 1.0, "remove_unused_columns": False, "datasets": [ # { # "path": "argilla/kto-mix-15k", # "type": "chatml.argilla_chat", # "split": "train", # }, { "path": "argilla/ultrafeedback-binarized-preferences-cleaned-kto", "type": "chatml.ultra", "split": "train", }, # { # "path": "argilla/kto-mix-15k", # "type": "llama3.argilla_chat", # "split": "train", # }, { "path": "argilla/ultrafeedback-binarized-preferences-cleaned-kto", "type": "llama3.ultra", "split": "train", }, ], "num_epochs": 1, "micro_batch_size": 4, "gradient_accumulation_steps": 1, "output_dir": temp_dir, "learning_rate": 0.00001, "optimizer": "paged_adamw_8bit", "lr_scheduler": "cosine", "max_steps": 20, "save_steps": 10, "warmup_steps": 5, "gradient_checkpointing": True, "gradient_checkpointing_kwargs": {"use_reentrant": True}, } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists()