Clean up landmark patching
Browse files
src/axolotl/monkeypatch/llama_landmark_attn.py
CHANGED
|
@@ -28,15 +28,23 @@ from typing import List, Optional, Tuple, Union
|
|
| 28 |
import torch
|
| 29 |
import torch.utils.checkpoint
|
| 30 |
from torch import nn
|
| 31 |
-
from torch.nn import
|
| 32 |
-
from transformers.activations import ACT2FN
|
| 33 |
from transformers.modeling_outputs import (
|
| 34 |
BaseModelOutputWithPast,
|
| 35 |
CausalLMOutputWithPast,
|
| 36 |
-
SequenceClassifierOutputWithPast,
|
| 37 |
)
|
| 38 |
-
from transformers.modeling_utils import PreTrainedModel
|
| 39 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
from transformers.utils import (
|
| 41 |
add_start_docstrings,
|
| 42 |
add_start_docstrings_to_model_forward,
|
|
@@ -51,131 +59,6 @@ _CONFIG_FOR_DOC = "LlamaConfig"
|
|
| 51 |
MEM_TOKEN = "<landmark>" # nosec
|
| 52 |
|
| 53 |
|
| 54 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 55 |
-
def _make_causal_mask(
|
| 56 |
-
input_ids_shape: torch.Size,
|
| 57 |
-
dtype: torch.dtype,
|
| 58 |
-
device: torch.device,
|
| 59 |
-
past_key_values_length: int = 0,
|
| 60 |
-
):
|
| 61 |
-
"""
|
| 62 |
-
Make causal mask used for bi-directional self-attention.
|
| 63 |
-
"""
|
| 64 |
-
bsz, tgt_len = input_ids_shape
|
| 65 |
-
mask = torch.full(
|
| 66 |
-
(tgt_len, tgt_len),
|
| 67 |
-
torch.tensor(torch.finfo(dtype).min, device=device),
|
| 68 |
-
device=device,
|
| 69 |
-
)
|
| 70 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 71 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 72 |
-
mask = mask.to(dtype)
|
| 73 |
-
|
| 74 |
-
if past_key_values_length > 0:
|
| 75 |
-
mask = torch.cat(
|
| 76 |
-
[
|
| 77 |
-
torch.zeros(
|
| 78 |
-
tgt_len, past_key_values_length, dtype=dtype, device=device
|
| 79 |
-
),
|
| 80 |
-
mask,
|
| 81 |
-
],
|
| 82 |
-
dim=-1,
|
| 83 |
-
)
|
| 84 |
-
return mask[None, None, :, :].expand(
|
| 85 |
-
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 90 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 91 |
-
"""
|
| 92 |
-
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 93 |
-
"""
|
| 94 |
-
bsz, src_len = mask.size()
|
| 95 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 96 |
-
|
| 97 |
-
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 98 |
-
|
| 99 |
-
inverted_mask = 1.0 - expanded_mask
|
| 100 |
-
|
| 101 |
-
return inverted_mask.masked_fill(
|
| 102 |
-
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
class LlamaRMSNorm(nn.Module):
|
| 107 |
-
def __init__(self, hidden_size, eps=1e-6):
|
| 108 |
-
"""
|
| 109 |
-
LlamaRMSNorm is equivalent to T5LayerNorm
|
| 110 |
-
"""
|
| 111 |
-
super().__init__()
|
| 112 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 113 |
-
self.variance_epsilon = eps
|
| 114 |
-
|
| 115 |
-
def forward(self, hidden_states):
|
| 116 |
-
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
| 117 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 118 |
-
|
| 119 |
-
# convert into half-precision if necessary
|
| 120 |
-
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
| 121 |
-
hidden_states = hidden_states.to(self.weight.dtype)
|
| 122 |
-
|
| 123 |
-
return self.weight * hidden_states
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
class LlamaRotaryEmbedding(torch.nn.Module):
|
| 127 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 128 |
-
super().__init__()
|
| 129 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
| 130 |
-
self.register_buffer("inv_freq", inv_freq)
|
| 131 |
-
|
| 132 |
-
# Build here to make `torch.jit.trace` work.
|
| 133 |
-
self.max_seq_len_cached = max_position_embeddings
|
| 134 |
-
t = torch.arange(
|
| 135 |
-
self.max_seq_len_cached,
|
| 136 |
-
device=self.inv_freq.device,
|
| 137 |
-
dtype=self.inv_freq.dtype,
|
| 138 |
-
)
|
| 139 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 140 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 141 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 142 |
-
self.register_buffer(
|
| 143 |
-
"cos_cached", emb.cos()[None, None, :, :], persistent=False
|
| 144 |
-
)
|
| 145 |
-
self.register_buffer(
|
| 146 |
-
"sin_cached", emb.sin()[None, None, :, :], persistent=False
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
def forward(self, x, seq_len=None):
|
| 150 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 151 |
-
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
| 152 |
-
if seq_len > self.max_seq_len_cached:
|
| 153 |
-
self.max_seq_len_cached = seq_len
|
| 154 |
-
t = torch.arange(
|
| 155 |
-
self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype
|
| 156 |
-
)
|
| 157 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 158 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 159 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 160 |
-
self.register_buffer(
|
| 161 |
-
"cos_cached", emb.cos()[None, None, :, :], persistent=False
|
| 162 |
-
)
|
| 163 |
-
self.register_buffer(
|
| 164 |
-
"sin_cached", emb.sin()[None, None, :, :], persistent=False
|
| 165 |
-
)
|
| 166 |
-
return (
|
| 167 |
-
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 168 |
-
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
def rotate_half(x):
|
| 173 |
-
"""Rotates half the hidden dims of the input."""
|
| 174 |
-
x1 = x[..., : x.shape[-1] // 2]
|
| 175 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
| 176 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 177 |
-
|
| 178 |
-
|
| 179 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 180 |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
| 181 |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
|
@@ -190,24 +73,11 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
|
| 190 |
return q_embed, k_embed
|
| 191 |
|
| 192 |
|
| 193 |
-
class LlamaMLP(nn.Module):
|
| 194 |
-
def __init__(
|
| 195 |
-
self,
|
| 196 |
-
hidden_size: int,
|
| 197 |
-
intermediate_size: int,
|
| 198 |
-
hidden_act: str,
|
| 199 |
-
):
|
| 200 |
-
super().__init__()
|
| 201 |
-
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 202 |
-
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
| 203 |
-
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 204 |
-
self.act_fn = ACT2FN[hidden_act]
|
| 205 |
-
|
| 206 |
-
def forward(self, x):
|
| 207 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 208 |
-
|
| 209 |
-
|
| 210 |
class LandmarkGroupedSoftmaxFunction(torch.autograd.Function):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 212 |
@staticmethod
|
| 213 |
def forward(ctx, x, dim, mem_cnt, resp_mem_idx):
|
|
@@ -682,16 +552,14 @@ class LlamaAttention(nn.Module):
|
|
| 682 |
# upcast attention to fp32
|
| 683 |
if is_mem is None:
|
| 684 |
raise ValueError("Don't use this without landmarks")
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
last_section_mask=last_section_mask,
|
| 694 |
-
).to(query_states.dtype)
|
| 695 |
if attn_prefix is not None:
|
| 696 |
attn_prefix, attn_weights = torch.split(
|
| 697 |
attn_weights,
|
|
@@ -722,6 +590,10 @@ class LlamaAttention(nn.Module):
|
|
| 722 |
|
| 723 |
|
| 724 |
class LlamaDecoderLayer(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 725 |
def __init__(self, config: LlamaConfig):
|
| 726 |
super().__init__()
|
| 727 |
self.hidden_size = config.hidden_size
|
|
@@ -802,114 +674,6 @@ class LlamaDecoderLayer(nn.Module):
|
|
| 802 |
return outputs
|
| 803 |
|
| 804 |
|
| 805 |
-
LLAMA_START_DOCSTRING = r"""
|
| 806 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 807 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 808 |
-
etc.)
|
| 809 |
-
|
| 810 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 811 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 812 |
-
and behavior.
|
| 813 |
-
|
| 814 |
-
Parameters:
|
| 815 |
-
config ([`LlamaConfig`]):
|
| 816 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 817 |
-
load the weights associated with the model, only the configuration. Check out the
|
| 818 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 819 |
-
"""
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
@add_start_docstrings(
|
| 823 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 824 |
-
LLAMA_START_DOCSTRING,
|
| 825 |
-
)
|
| 826 |
-
class LlamaPreTrainedModel(PreTrainedModel):
|
| 827 |
-
config_class = LlamaConfig
|
| 828 |
-
base_model_prefix = "model"
|
| 829 |
-
supports_gradient_checkpointing = True
|
| 830 |
-
_no_split_modules = ["LlamaDecoderLayer"]
|
| 831 |
-
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
| 832 |
-
|
| 833 |
-
def _init_weights(self, module):
|
| 834 |
-
std = self.config.initializer_range
|
| 835 |
-
if isinstance(module, nn.Linear):
|
| 836 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 837 |
-
if module.bias is not None:
|
| 838 |
-
module.bias.data.zero_()
|
| 839 |
-
elif isinstance(module, nn.Embedding):
|
| 840 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 841 |
-
if module.padding_idx is not None:
|
| 842 |
-
module.weight.data[module.padding_idx].zero_()
|
| 843 |
-
|
| 844 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
| 845 |
-
if isinstance(module, LlamaModel):
|
| 846 |
-
module.gradient_checkpointing = value
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
LLAMA_INPUTS_DOCSTRING = r"""
|
| 850 |
-
Args:
|
| 851 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 852 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 853 |
-
it.
|
| 854 |
-
|
| 855 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 856 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 857 |
-
|
| 858 |
-
[What are input IDs?](../glossary#input-ids)
|
| 859 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 860 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 861 |
-
|
| 862 |
-
- 1 for tokens that are **not masked**,
|
| 863 |
-
- 0 for tokens that are **masked**.
|
| 864 |
-
|
| 865 |
-
[What are attention masks?](../glossary#attention-mask)
|
| 866 |
-
|
| 867 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 868 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 869 |
-
|
| 870 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 871 |
-
`past_key_values`).
|
| 872 |
-
|
| 873 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 874 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 875 |
-
information on the default strategy.
|
| 876 |
-
|
| 877 |
-
- 1 indicates the head is **not masked**,
|
| 878 |
-
- 0 indicates the head is **masked**.
|
| 879 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 880 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 881 |
-
config.n_positions - 1]`.
|
| 882 |
-
|
| 883 |
-
[What are position IDs?](../glossary#position-ids)
|
| 884 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 885 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 886 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 887 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 888 |
-
|
| 889 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 890 |
-
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 891 |
-
|
| 892 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 893 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 894 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 895 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 896 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 897 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 898 |
-
model's internal embedding lookup matrix.
|
| 899 |
-
use_cache (`bool`, *optional*):
|
| 900 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 901 |
-
`past_key_values`).
|
| 902 |
-
output_attentions (`bool`, *optional*):
|
| 903 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 904 |
-
tensors for more detail.
|
| 905 |
-
output_hidden_states (`bool`, *optional*):
|
| 906 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 907 |
-
more detail.
|
| 908 |
-
return_dict (`bool`, *optional*):
|
| 909 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 910 |
-
"""
|
| 911 |
-
|
| 912 |
-
|
| 913 |
@add_start_docstrings(
|
| 914 |
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 915 |
LLAMA_START_DOCSTRING,
|
|
@@ -1178,6 +942,10 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
| 1178 |
|
| 1179 |
|
| 1180 |
class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1181 |
def __init__(self, config):
|
| 1182 |
super().__init__(config)
|
| 1183 |
self.model = LlamaModel(config)
|
|
@@ -1448,149 +1216,15 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
| 1448 |
return reordered_past
|
| 1449 |
|
| 1450 |
|
| 1451 |
-
@add_start_docstrings(
|
| 1452 |
-
"""
|
| 1453 |
-
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
| 1454 |
-
|
| 1455 |
-
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1456 |
-
(e.g. GPT-2) do.
|
| 1457 |
-
|
| 1458 |
-
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1459 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1460 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1461 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1462 |
-
each row of the batch).
|
| 1463 |
-
""",
|
| 1464 |
-
LLAMA_START_DOCSTRING,
|
| 1465 |
-
)
|
| 1466 |
-
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
| 1467 |
-
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
| 1468 |
-
|
| 1469 |
-
def __init__(self, config):
|
| 1470 |
-
super().__init__(config)
|
| 1471 |
-
self.num_labels = config.num_labels
|
| 1472 |
-
self.model = LlamaModel(config)
|
| 1473 |
-
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1474 |
-
|
| 1475 |
-
# Initialize weights and apply final processing
|
| 1476 |
-
self.post_init()
|
| 1477 |
-
|
| 1478 |
-
def get_input_embeddings(self):
|
| 1479 |
-
return self.model.embed_tokens
|
| 1480 |
-
|
| 1481 |
-
def set_input_embeddings(self, value):
|
| 1482 |
-
self.model.embed_tokens = value
|
| 1483 |
-
|
| 1484 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1485 |
-
def forward(
|
| 1486 |
-
self,
|
| 1487 |
-
input_ids: torch.LongTensor = None,
|
| 1488 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1489 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 1490 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1491 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1492 |
-
labels: Optional[torch.LongTensor] = None,
|
| 1493 |
-
use_cache: Optional[bool] = None,
|
| 1494 |
-
output_attentions: Optional[bool] = None,
|
| 1495 |
-
output_hidden_states: Optional[bool] = None,
|
| 1496 |
-
return_dict: Optional[bool] = None,
|
| 1497 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1498 |
-
r"""
|
| 1499 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1500 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1501 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1502 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1503 |
-
"""
|
| 1504 |
-
return_dict = (
|
| 1505 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1506 |
-
)
|
| 1507 |
-
|
| 1508 |
-
transformer_outputs = self.model(
|
| 1509 |
-
input_ids,
|
| 1510 |
-
attention_mask=attention_mask,
|
| 1511 |
-
position_ids=position_ids,
|
| 1512 |
-
past_key_values=past_key_values,
|
| 1513 |
-
inputs_embeds=inputs_embeds,
|
| 1514 |
-
use_cache=use_cache,
|
| 1515 |
-
output_attentions=output_attentions,
|
| 1516 |
-
output_hidden_states=output_hidden_states,
|
| 1517 |
-
return_dict=return_dict,
|
| 1518 |
-
)
|
| 1519 |
-
hidden_states = transformer_outputs[0]
|
| 1520 |
-
logits = self.score(hidden_states)
|
| 1521 |
-
|
| 1522 |
-
if input_ids is not None:
|
| 1523 |
-
batch_size = input_ids.shape[0]
|
| 1524 |
-
else:
|
| 1525 |
-
batch_size = inputs_embeds.shape[0]
|
| 1526 |
-
|
| 1527 |
-
if self.config.pad_token_id is None and batch_size != 1:
|
| 1528 |
-
raise ValueError(
|
| 1529 |
-
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1530 |
-
)
|
| 1531 |
-
if self.config.pad_token_id is None:
|
| 1532 |
-
sequence_lengths = -1
|
| 1533 |
-
else:
|
| 1534 |
-
if input_ids is not None:
|
| 1535 |
-
sequence_lengths = (
|
| 1536 |
-
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
| 1537 |
-
).to(logits.device)
|
| 1538 |
-
else:
|
| 1539 |
-
sequence_lengths = -1
|
| 1540 |
-
|
| 1541 |
-
pooled_logits = logits[
|
| 1542 |
-
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 1543 |
-
]
|
| 1544 |
-
|
| 1545 |
-
loss = None
|
| 1546 |
-
if labels is not None:
|
| 1547 |
-
labels = labels.to(logits.device)
|
| 1548 |
-
if self.config.problem_type is None:
|
| 1549 |
-
if self.num_labels == 1:
|
| 1550 |
-
self.config.problem_type = "regression"
|
| 1551 |
-
elif self.num_labels > 1 and (
|
| 1552 |
-
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1553 |
-
):
|
| 1554 |
-
self.config.problem_type = "single_label_classification"
|
| 1555 |
-
else:
|
| 1556 |
-
self.config.problem_type = "multi_label_classification"
|
| 1557 |
-
|
| 1558 |
-
if self.config.problem_type == "regression":
|
| 1559 |
-
loss_fct = MSELoss()
|
| 1560 |
-
if self.num_labels == 1:
|
| 1561 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1562 |
-
else:
|
| 1563 |
-
loss = loss_fct(pooled_logits, labels)
|
| 1564 |
-
elif self.config.problem_type == "single_label_classification":
|
| 1565 |
-
loss_fct = CrossEntropyLoss()
|
| 1566 |
-
loss = loss_fct(
|
| 1567 |
-
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1568 |
-
)
|
| 1569 |
-
elif self.config.problem_type == "multi_label_classification":
|
| 1570 |
-
loss_fct = BCEWithLogitsLoss()
|
| 1571 |
-
loss = loss_fct(pooled_logits, labels)
|
| 1572 |
-
if not return_dict:
|
| 1573 |
-
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1574 |
-
return ((loss,) + output) if loss is not None else output
|
| 1575 |
-
|
| 1576 |
-
return SequenceClassifierOutputWithPast(
|
| 1577 |
-
loss=loss,
|
| 1578 |
-
logits=pooled_logits,
|
| 1579 |
-
past_key_values=transformer_outputs.past_key_values,
|
| 1580 |
-
hidden_states=transformer_outputs.hidden_states,
|
| 1581 |
-
attentions=transformer_outputs.attentions,
|
| 1582 |
-
)
|
| 1583 |
-
|
| 1584 |
-
|
| 1585 |
def add_mem_tokens(example, mem_freq, mem_id):
|
| 1586 |
-
|
| 1587 |
ret = []
|
| 1588 |
prev_idx = 0
|
| 1589 |
-
for t_idx in range(mem_freq, len(
|
| 1590 |
-
ret.extend(
|
| 1591 |
ret.append(mem_id)
|
| 1592 |
prev_idx = t_idx
|
| 1593 |
-
ret.extend(
|
| 1594 |
# drop attention_mask
|
| 1595 |
return {"input_ids": ret}
|
| 1596 |
|
|
@@ -1602,3 +1236,4 @@ def patch_llama_with_landmark_attn():
|
|
| 1602 |
transformers.models.llama.modeling_llama.LlamaModel = LlamaModel
|
| 1603 |
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
| 1604 |
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
|
|
|
|
|
|
| 28 |
import torch
|
| 29 |
import torch.utils.checkpoint
|
| 30 |
from torch import nn
|
| 31 |
+
from torch.nn import CrossEntropyLoss
|
|
|
|
| 32 |
from transformers.modeling_outputs import (
|
| 33 |
BaseModelOutputWithPast,
|
| 34 |
CausalLMOutputWithPast,
|
|
|
|
| 35 |
)
|
|
|
|
| 36 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
| 37 |
+
from transformers.models.llama.modeling_llama import (
|
| 38 |
+
LLAMA_INPUTS_DOCSTRING,
|
| 39 |
+
LLAMA_START_DOCSTRING,
|
| 40 |
+
LlamaMLP,
|
| 41 |
+
LlamaPreTrainedModel,
|
| 42 |
+
LlamaRMSNorm,
|
| 43 |
+
LlamaRotaryEmbedding,
|
| 44 |
+
_expand_mask,
|
| 45 |
+
_make_causal_mask,
|
| 46 |
+
rotate_half,
|
| 47 |
+
)
|
| 48 |
from transformers.utils import (
|
| 49 |
add_start_docstrings,
|
| 50 |
add_start_docstrings_to_model_forward,
|
|
|
|
| 59 |
MEM_TOKEN = "<landmark>" # nosec
|
| 60 |
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 63 |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
| 64 |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
|
|
|
| 73 |
return q_embed, k_embed
|
| 74 |
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
class LandmarkGroupedSoftmaxFunction(torch.autograd.Function):
|
| 77 |
+
"""
|
| 78 |
+
Landmark grouped softmax function.
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 82 |
@staticmethod
|
| 83 |
def forward(ctx, x, dim, mem_cnt, resp_mem_idx):
|
|
|
|
| 552 |
# upcast attention to fp32
|
| 553 |
if is_mem is None:
|
| 554 |
raise ValueError("Don't use this without landmarks")
|
| 555 |
+
|
| 556 |
+
attn_weights = landmark_grouped_softmax(
|
| 557 |
+
attn_weights,
|
| 558 |
+
dim=-1,
|
| 559 |
+
is_mem=is_mem.expand(-1, self.num_heads, -1, -1),
|
| 560 |
+
last_section_mask=last_section_mask,
|
| 561 |
+
).to(query_states.dtype)
|
| 562 |
+
|
|
|
|
|
|
|
| 563 |
if attn_prefix is not None:
|
| 564 |
attn_prefix, attn_weights = torch.split(
|
| 565 |
attn_weights,
|
|
|
|
| 590 |
|
| 591 |
|
| 592 |
class LlamaDecoderLayer(nn.Module):
|
| 593 |
+
"""
|
| 594 |
+
Llama Decoder layer
|
| 595 |
+
"""
|
| 596 |
+
|
| 597 |
def __init__(self, config: LlamaConfig):
|
| 598 |
super().__init__()
|
| 599 |
self.hidden_size = config.hidden_size
|
|
|
|
| 674 |
return outputs
|
| 675 |
|
| 676 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 677 |
@add_start_docstrings(
|
| 678 |
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 679 |
LLAMA_START_DOCSTRING,
|
|
|
|
| 942 |
|
| 943 |
|
| 944 |
class LlamaForCausalLM(LlamaPreTrainedModel):
|
| 945 |
+
"""
|
| 946 |
+
Llama model with a causal language modeling head.
|
| 947 |
+
"""
|
| 948 |
+
|
| 949 |
def __init__(self, config):
|
| 950 |
super().__init__(config)
|
| 951 |
self.model = LlamaModel(config)
|
|
|
|
| 1216 |
return reordered_past
|
| 1217 |
|
| 1218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1219 |
def add_mem_tokens(example, mem_freq, mem_id):
|
| 1220 |
+
ids = example["input_ids"]
|
| 1221 |
ret = []
|
| 1222 |
prev_idx = 0
|
| 1223 |
+
for t_idx in range(mem_freq, len(ids), mem_freq):
|
| 1224 |
+
ret.extend(ids[prev_idx:t_idx])
|
| 1225 |
ret.append(mem_id)
|
| 1226 |
prev_idx = t_idx
|
| 1227 |
+
ret.extend(ids[prev_idx:])
|
| 1228 |
# drop attention_mask
|
| 1229 |
return {"input_ids": ret}
|
| 1230 |
|
|
|
|
| 1236 |
transformers.models.llama.modeling_llama.LlamaModel = LlamaModel
|
| 1237 |
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
| 1238 |
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
|
| 1239 |
+
transformers.models.llama.modeling_llama.apply_rotary_pos_emb = apply_rotary_pos_emb
|