copy xformers attn from ooba since we removed dep on alpaca_lora_4bit
Browse files
src/axolotl/monkeypatch/llama_attn_hijack_xformers.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments
|
| 3 |
+
'''
|
| 4 |
+
|
| 5 |
+
import logging
|
| 6 |
+
import math
|
| 7 |
+
from typing import Optional, Tuple
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import transformers.models.llama.modeling_llama
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
import xformers.ops
|
| 15 |
+
except Exception:
|
| 16 |
+
logging.error("xformers not found! Please install it before trying to use it.")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def hijack_llama_attention():
|
| 20 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
|
| 21 |
+
logging.info("Replaced attention with xformers_attention")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def hijack_llama_sdp_attention():
|
| 25 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = sdp_attention_forward
|
| 26 |
+
logging.info("Replaced attention with sdp_attention")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def xformers_forward(
|
| 30 |
+
self,
|
| 31 |
+
hidden_states: torch.Tensor,
|
| 32 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 33 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 34 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 35 |
+
output_attentions: bool = False,
|
| 36 |
+
use_cache: bool = False,
|
| 37 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 38 |
+
bsz, q_len, _ = hidden_states.size()
|
| 39 |
+
|
| 40 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 41 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 42 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 43 |
+
|
| 44 |
+
kv_seq_len = key_states.shape[-2]
|
| 45 |
+
if past_key_value is not None:
|
| 46 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 47 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 48 |
+
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 49 |
+
# [bsz, nh, t, hd]
|
| 50 |
+
|
| 51 |
+
if past_key_value is not None:
|
| 52 |
+
# reuse k, v, self_attention
|
| 53 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 54 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 55 |
+
|
| 56 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 57 |
+
|
| 58 |
+
# We only apply xformers optimizations if we don't need to output the whole attention matrix
|
| 59 |
+
if not output_attentions:
|
| 60 |
+
query_states = query_states.transpose(1, 2)
|
| 61 |
+
key_states = key_states.transpose(1, 2)
|
| 62 |
+
value_states = value_states.transpose(1, 2)
|
| 63 |
+
|
| 64 |
+
# This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
|
| 65 |
+
# We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
|
| 66 |
+
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
|
| 67 |
+
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
| 68 |
+
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=None)
|
| 69 |
+
else:
|
| 70 |
+
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
| 71 |
+
attn_output = xformers.ops.memory_efficient_attention(query_states, key_states, value_states, attn_bias=xformers.ops.LowerTriangularMask())
|
| 72 |
+
attn_weights = None
|
| 73 |
+
else:
|
| 74 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 75 |
+
|
| 76 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 77 |
+
raise ValueError(
|
| 78 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
| 79 |
+
f" {attn_weights.size()}"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
if attention_mask is not None:
|
| 83 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 84 |
+
raise ValueError(
|
| 85 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 86 |
+
)
|
| 87 |
+
attn_weights = attn_weights + attention_mask
|
| 88 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
| 89 |
+
|
| 90 |
+
# upcast attention to fp32
|
| 91 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 92 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 93 |
+
|
| 94 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 95 |
+
raise ValueError(
|
| 96 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 97 |
+
f" {attn_output.size()}"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
attn_output = attn_output.transpose(1, 2)
|
| 101 |
+
|
| 102 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 103 |
+
attn_output = self.o_proj(attn_output)
|
| 104 |
+
return attn_output, attn_weights, past_key_value
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def sdp_attention_forward(
|
| 108 |
+
self,
|
| 109 |
+
hidden_states: torch.Tensor,
|
| 110 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 111 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 112 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 113 |
+
output_attentions: bool = False,
|
| 114 |
+
use_cache: bool = False,
|
| 115 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 116 |
+
bsz, q_len, _ = hidden_states.size()
|
| 117 |
+
|
| 118 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 119 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 120 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 121 |
+
|
| 122 |
+
kv_seq_len = key_states.shape[-2]
|
| 123 |
+
if past_key_value is not None:
|
| 124 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 125 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 126 |
+
query_states, key_states = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 127 |
+
# [bsz, nh, t, hd]
|
| 128 |
+
|
| 129 |
+
if past_key_value is not None:
|
| 130 |
+
# reuse k, v, self_attention
|
| 131 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 132 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 133 |
+
|
| 134 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 135 |
+
|
| 136 |
+
# We only apply sdp attention if we don't need to output the whole attention matrix
|
| 137 |
+
if not output_attentions:
|
| 138 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask, is_causal=False)
|
| 139 |
+
attn_weights = None
|
| 140 |
+
else:
|
| 141 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 142 |
+
|
| 143 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 144 |
+
raise ValueError(
|
| 145 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
| 146 |
+
f" {attn_weights.size()}"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
if attention_mask is not None:
|
| 150 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 151 |
+
raise ValueError(
|
| 152 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 153 |
+
)
|
| 154 |
+
attn_weights = attn_weights + attention_mask
|
| 155 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
| 156 |
+
|
| 157 |
+
# upcast attention to fp32
|
| 158 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 159 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 160 |
+
|
| 161 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 162 |
+
raise ValueError(
|
| 163 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 164 |
+
f" {attn_output.size()}"
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
attn_output = attn_output.transpose(1, 2)
|
| 168 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 169 |
+
|
| 170 |
+
attn_output = self.o_proj(attn_output)
|
| 171 |
+
|
| 172 |
+
return attn_output, attn_weights, past_key_value
|
src/axolotl/utils/models.py
CHANGED
|
@@ -97,12 +97,19 @@ def load_model(
|
|
| 97 |
logging.info("patching with flash attention")
|
| 98 |
replace_llama_attn_with_flash_attn()
|
| 99 |
elif is_llama_derived_model and cfg.xformers_attention:
|
| 100 |
-
from
|
| 101 |
hijack_llama_attention,
|
| 102 |
)
|
| 103 |
|
| 104 |
logging.info("patching with xformers attention")
|
| 105 |
hijack_llama_attention()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
if cfg.bf16:
|
| 108 |
torch_dtype = torch.bfloat16
|
|
|
|
| 97 |
logging.info("patching with flash attention")
|
| 98 |
replace_llama_attn_with_flash_attn()
|
| 99 |
elif is_llama_derived_model and cfg.xformers_attention:
|
| 100 |
+
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
|
| 101 |
hijack_llama_attention,
|
| 102 |
)
|
| 103 |
|
| 104 |
logging.info("patching with xformers attention")
|
| 105 |
hijack_llama_attention()
|
| 106 |
+
elif is_llama_derived_model and cfg.sdp_attention:
|
| 107 |
+
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
|
| 108 |
+
hijack_llama_sdp_attention,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
logging.info("patching with sdp attention")
|
| 112 |
+
hijack_llama_sdp_attention()
|
| 113 |
|
| 114 |
if cfg.bf16:
|
| 115 |
torch_dtype = torch.bfloat16
|