Multipack simplify for Mixtral (#1142)
Browse files- src/axolotl/core/trainer_builder.py +16 -7
- src/axolotl/monkeypatch/mixtral/__init__.py +4 -14
- src/axolotl/monkeypatch/mixtral/modeling_mixtral.py +0 -383
- src/axolotl/monkeypatch/utils.py +34 -0
- src/axolotl/utils/collators.py +27 -0
- src/axolotl/utils/config.py +38 -2
- src/axolotl/utils/models.py +7 -3
- src/axolotl/utils/trainer.py +1 -0
- tests/e2e/patched/test_mixtral_samplepack.py +3 -15
- tests/e2e/patched/test_model_patches.py +1 -5
- tests/monkeypatch/test_llama_attn_hijack_flash.py +70 -1
    	
        src/axolotl/core/trainer_builder.py
    CHANGED
    
    | @@ -12,7 +12,7 @@ from abc import abstractmethod | |
| 12 | 
             
            from dataclasses import dataclass, field
         | 
| 13 | 
             
            from functools import wraps
         | 
| 14 | 
             
            from pathlib import Path
         | 
| 15 | 
            -
            from typing import Optional
         | 
| 16 |  | 
| 17 | 
             
            import torch
         | 
| 18 | 
             
            import transformers
         | 
| @@ -37,6 +37,7 @@ from axolotl.utils.collators import ( | |
| 37 | 
             
                BatchSamplerDataCollatorForSeq2Seq,
         | 
| 38 | 
             
                DataCollatorForSeq2Seq,
         | 
| 39 | 
             
                MambaDataCollator,
         | 
|  | |
| 40 | 
             
            )
         | 
| 41 | 
             
            from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
         | 
| 42 | 
             
            from axolotl.utils.schedulers import (
         | 
| @@ -896,14 +897,22 @@ class HFCausalTrainerBuilder(TrainerBuilderBase): | |
| 896 | 
             
                    if is_eval and training_args.eval_sample_packing:
         | 
| 897 | 
             
                        use_batch_sampler_collator = True
         | 
| 898 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 899 | 
             
                    if use_batch_sampler_collator:
         | 
| 900 | 
            -
                         | 
| 901 | 
            -
                             | 
| 902 | 
            -
             | 
| 903 | 
            -
                             | 
| 904 | 
            -
             | 
|  | |
| 905 |  | 
| 906 | 
            -
                    return  | 
| 907 | 
             
                        self.tokenizer,
         | 
| 908 | 
             
                        return_tensors="pt",
         | 
| 909 | 
             
                        **kwargs,
         | 
|  | |
| 12 | 
             
            from dataclasses import dataclass, field
         | 
| 13 | 
             
            from functools import wraps
         | 
| 14 | 
             
            from pathlib import Path
         | 
| 15 | 
            +
            from typing import Optional, Type, Union
         | 
| 16 |  | 
| 17 | 
             
            import torch
         | 
| 18 | 
             
            import transformers
         | 
|  | |
| 37 | 
             
                BatchSamplerDataCollatorForSeq2Seq,
         | 
| 38 | 
             
                DataCollatorForSeq2Seq,
         | 
| 39 | 
             
                MambaDataCollator,
         | 
| 40 | 
            +
                V2BatchSamplerDataCollatorForSeq2Seq,
         | 
| 41 | 
             
            )
         | 
| 42 | 
             
            from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
         | 
| 43 | 
             
            from axolotl.utils.schedulers import (
         | 
|  | |
| 897 | 
             
                    if is_eval and training_args.eval_sample_packing:
         | 
| 898 | 
             
                        use_batch_sampler_collator = True
         | 
| 899 |  | 
| 900 | 
            +
                    collator: Type[
         | 
| 901 | 
            +
                        Union[
         | 
| 902 | 
            +
                            V2BatchSamplerDataCollatorForSeq2Seq,
         | 
| 903 | 
            +
                            BatchSamplerDataCollatorForSeq2Seq,
         | 
| 904 | 
            +
                            DataCollatorForSeq2Seq,
         | 
| 905 | 
            +
                        ]
         | 
| 906 | 
            +
                    ]
         | 
| 907 | 
             
                    if use_batch_sampler_collator:
         | 
| 908 | 
            +
                        if self.cfg.model_config_type == "mixtral":
         | 
| 909 | 
            +
                            collator = V2BatchSamplerDataCollatorForSeq2Seq
         | 
| 910 | 
            +
                        else:
         | 
| 911 | 
            +
                            collator = BatchSamplerDataCollatorForSeq2Seq
         | 
| 912 | 
            +
                    else:
         | 
| 913 | 
            +
                        collator = DataCollatorForSeq2Seq
         | 
| 914 |  | 
| 915 | 
            +
                    return collator(
         | 
| 916 | 
             
                        self.tokenizer,
         | 
| 917 | 
             
                        return_tensors="pt",
         | 
| 918 | 
             
                        **kwargs,
         | 
    	
        src/axolotl/monkeypatch/mixtral/__init__.py
    CHANGED
    
    | @@ -3,20 +3,10 @@ Patches to support multipack for mixtral | |
| 3 | 
             
            """
         | 
| 4 | 
             
            import transformers
         | 
| 5 |  | 
|  | |
| 6 |  | 
| 7 | 
            -
            def replace_mixtral_attn_with_multipack_flash_attn():
         | 
| 8 | 
            -
                from .modeling_mixtral import (
         | 
| 9 | 
            -
                    MixtralMultipackFlashAttention2,
         | 
| 10 | 
            -
                    mixtral_decoder_layer_forward,
         | 
| 11 | 
            -
                    mixtral_model_forward,
         | 
| 12 | 
            -
                )
         | 
| 13 |  | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
                transformers.models.mixtral.modeling_mixtral.MixtralModel.forward = (
         | 
| 18 | 
            -
                    mixtral_model_forward
         | 
| 19 | 
             
                )
         | 
| 20 | 
            -
                transformers.models.mixtral.modeling_mixtral.MIXTRAL_ATTENTION_CLASSES[
         | 
| 21 | 
            -
                    "flash_attention_2"
         | 
| 22 | 
            -
                ] = MixtralMultipackFlashAttention2
         | 
|  | |
| 3 | 
             
            """
         | 
| 4 | 
             
            import transformers
         | 
| 5 |  | 
| 6 | 
            +
            from axolotl.monkeypatch.utils import get_unpad_data
         | 
| 7 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 8 |  | 
| 9 | 
            +
            def replace_mixtral_attn_with_multipack_flash_attn():
         | 
| 10 | 
            +
                transformers.models.mixtral.modeling_mixtral._get_unpad_data = (  # pylint: disable=protected-access
         | 
| 11 | 
            +
                    get_unpad_data
         | 
|  | |
|  | |
| 12 | 
             
                )
         | 
|  | |
|  | |
|  | 
    	
        src/axolotl/monkeypatch/mixtral/modeling_mixtral.py
    DELETED
    
    | @@ -1,383 +0,0 @@ | |
| 1 | 
            -
            """
         | 
| 2 | 
            -
            Mixtral modeling for multipack
         | 
| 3 | 
            -
            """
         | 
| 4 | 
            -
            # pylint: disable=missing-module-docstring,unused-argument,protected-access,pointless-string-statement,duplicate-code
         | 
| 5 | 
            -
            import logging
         | 
| 6 | 
            -
            import warnings
         | 
| 7 | 
            -
            from typing import List, Optional, Tuple, Union
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            import torch
         | 
| 10 | 
            -
            from einops import rearrange
         | 
| 11 | 
            -
            from flash_attn import flash_attn_varlen_qkvpacked_func
         | 
| 12 | 
            -
            from transformers import Cache, DynamicCache
         | 
| 13 | 
            -
            from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
         | 
| 14 | 
            -
            from transformers.modeling_outputs import MoeModelOutputWithPast
         | 
| 15 | 
            -
            from transformers.models.mixtral.modeling_mixtral import (
         | 
| 16 | 
            -
                MixtralFlashAttention2,
         | 
| 17 | 
            -
                apply_rotary_pos_emb,
         | 
| 18 | 
            -
                repeat_kv,
         | 
| 19 | 
            -
            )
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids
         | 
| 22 | 
            -
             | 
| 23 | 
            -
            LOG = logging.getLogger("axolotl.monkeypatch.mixtral")
         | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
            class MixtralMultipackFlashAttention2(MixtralFlashAttention2):
         | 
| 27 | 
            -
                """
         | 
| 28 | 
            -
                Custom multipack implementation w flash attention 2
         | 
| 29 | 
            -
                """
         | 
| 30 | 
            -
             | 
| 31 | 
            -
                def __init__(self, *args, **kwargs):
         | 
| 32 | 
            -
                    super().__init__(*args, **kwargs)
         | 
| 33 | 
            -
                    self._flash_attn_uses_top_left_mask = True
         | 
| 34 | 
            -
             | 
| 35 | 
            -
                def forward(
         | 
| 36 | 
            -
                    self,
         | 
| 37 | 
            -
                    hidden_states: torch.Tensor,
         | 
| 38 | 
            -
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 39 | 
            -
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 40 | 
            -
                    past_key_value: Optional[Cache] = None,
         | 
| 41 | 
            -
                    output_attentions: bool = False,
         | 
| 42 | 
            -
                    use_cache: bool = False,
         | 
| 43 | 
            -
                    cu_seqlens: Optional[torch.Tensor] = None,
         | 
| 44 | 
            -
                    max_seqlen: Optional[torch.Tensor] = None,
         | 
| 45 | 
            -
                    **kwargs,
         | 
| 46 | 
            -
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 47 | 
            -
                    if "padding_mask" in kwargs:
         | 
| 48 | 
            -
                        warnings.warn(
         | 
| 49 | 
            -
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 50 | 
            -
                        )
         | 
| 51 | 
            -
                    bsz, q_len, _ = hidden_states.size()
         | 
| 52 | 
            -
             | 
| 53 | 
            -
                    query_states = self.q_proj(hidden_states)
         | 
| 54 | 
            -
                    key_states = self.k_proj(hidden_states)
         | 
| 55 | 
            -
                    value_states = self.v_proj(hidden_states)
         | 
| 56 | 
            -
             | 
| 57 | 
            -
                    query_states = query_states.view(
         | 
| 58 | 
            -
                        bsz, q_len, self.num_heads, self.head_dim
         | 
| 59 | 
            -
                    ).transpose(1, 2)
         | 
| 60 | 
            -
                    key_states = key_states.view(
         | 
| 61 | 
            -
                        bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 62 | 
            -
                    ).transpose(1, 2)
         | 
| 63 | 
            -
                    value_states = value_states.view(
         | 
| 64 | 
            -
                        bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 65 | 
            -
                    ).transpose(1, 2)
         | 
| 66 | 
            -
             | 
| 67 | 
            -
                    kv_seq_len = key_states.shape[-2]
         | 
| 68 | 
            -
                    if past_key_value is not None:
         | 
| 69 | 
            -
                        if self.layer_idx is None:
         | 
| 70 | 
            -
                            raise ValueError(
         | 
| 71 | 
            -
                                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
         | 
| 72 | 
            -
                                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
         | 
| 73 | 
            -
                                "with a layer index."
         | 
| 74 | 
            -
                            )
         | 
| 75 | 
            -
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 76 | 
            -
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 77 | 
            -
                    query_states, key_states = apply_rotary_pos_emb(
         | 
| 78 | 
            -
                        query_states, key_states, cos, sin, position_ids
         | 
| 79 | 
            -
                    )
         | 
| 80 | 
            -
             | 
| 81 | 
            -
                    if past_key_value is not None:
         | 
| 82 | 
            -
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 83 | 
            -
                        key_states, value_states = past_key_value.update(
         | 
| 84 | 
            -
                            key_states, value_states, self.layer_idx, cache_kwargs
         | 
| 85 | 
            -
                        )
         | 
| 86 | 
            -
             | 
| 87 | 
            -
                    # repeat k/v heads if n_kv_heads < n_heads
         | 
| 88 | 
            -
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 89 | 
            -
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 90 | 
            -
             | 
| 91 | 
            -
                    if cu_seqlens is not None and max_seqlen is not None and cu_seqlens.dim() == 1:
         | 
| 92 | 
            -
                        # special handling using sample packing
         | 
| 93 | 
            -
                        qkv = torch.stack(
         | 
| 94 | 
            -
                            [query_states, key_states, value_states], dim=2
         | 
| 95 | 
            -
                        )  # [bsz, nh, 3, q_len, hd]
         | 
| 96 | 
            -
                        qkv = qkv.transpose(1, 3)  # [bsz, q_len, 3, nh, hd]
         | 
| 97 | 
            -
                        qkv = rearrange(qkv, "b s ... -> (b s) ...")
         | 
| 98 | 
            -
             | 
| 99 | 
            -
                        attn_output = flash_attn_varlen_qkvpacked_func(
         | 
| 100 | 
            -
                            qkv,
         | 
| 101 | 
            -
                            cu_seqlens,
         | 
| 102 | 
            -
                            max_seqlen,
         | 
| 103 | 
            -
                            dropout_p=self.attention_dropout,
         | 
| 104 | 
            -
                            softmax_scale=None,
         | 
| 105 | 
            -
                            causal=True,
         | 
| 106 | 
            -
                        )
         | 
| 107 | 
            -
                        attn_output = rearrange(attn_output, "(b s) ... -> b s ...", b=bsz)
         | 
| 108 | 
            -
             | 
| 109 | 
            -
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 110 | 
            -
                    attn_output = self.o_proj(attn_output)
         | 
| 111 | 
            -
             | 
| 112 | 
            -
                    if not output_attentions:
         | 
| 113 | 
            -
                        attn_weights = None
         | 
| 114 | 
            -
             | 
| 115 | 
            -
                    return attn_output, attn_weights, past_key_value
         | 
| 116 | 
            -
             | 
| 117 | 
            -
             | 
| 118 | 
            -
            def mixtral_decoder_layer_forward(
         | 
| 119 | 
            -
                self,
         | 
| 120 | 
            -
                hidden_states: torch.Tensor,
         | 
| 121 | 
            -
                attention_mask: Optional[torch.Tensor] = None,
         | 
| 122 | 
            -
                position_ids: Optional[torch.LongTensor] = None,
         | 
| 123 | 
            -
                past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 124 | 
            -
                output_attentions: Optional[bool] = False,
         | 
| 125 | 
            -
                output_router_logits: Optional[bool] = False,
         | 
| 126 | 
            -
                use_cache: Optional[bool] = False,
         | 
| 127 | 
            -
                cu_seqlens: Optional[torch.Tensor] = None,
         | 
| 128 | 
            -
                max_seqlen: Optional[torch.Tensor] = None,
         | 
| 129 | 
            -
                **kwargs,
         | 
| 130 | 
            -
            ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 131 | 
            -
                if "padding_mask" in kwargs:
         | 
| 132 | 
            -
                    warnings.warn(
         | 
| 133 | 
            -
                        "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 134 | 
            -
                    )
         | 
| 135 | 
            -
                """
         | 
| 136 | 
            -
                Args:
         | 
| 137 | 
            -
                    hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 138 | 
            -
                    attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
         | 
| 139 | 
            -
                        `(batch, sequence_length)` where padding elements are indicated by 0.
         | 
| 140 | 
            -
                    past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 141 | 
            -
                    output_attentions (`bool`, *optional*):
         | 
| 142 | 
            -
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 143 | 
            -
                        returned tensors for more detail.
         | 
| 144 | 
            -
                    output_router_logits (`bool`, *optional*):
         | 
| 145 | 
            -
                        Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
         | 
| 146 | 
            -
                        should not be returned during inference.
         | 
| 147 | 
            -
                    use_cache (`bool`, *optional*):
         | 
| 148 | 
            -
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 149 | 
            -
                        (see `past_key_values`).
         | 
| 150 | 
            -
                """
         | 
| 151 | 
            -
             | 
| 152 | 
            -
                residual = hidden_states
         | 
| 153 | 
            -
             | 
| 154 | 
            -
                hidden_states = self.input_layernorm(hidden_states)
         | 
| 155 | 
            -
             | 
| 156 | 
            -
                # Self Attention
         | 
| 157 | 
            -
                hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 158 | 
            -
                    hidden_states=hidden_states,
         | 
| 159 | 
            -
                    attention_mask=attention_mask,
         | 
| 160 | 
            -
                    position_ids=position_ids,
         | 
| 161 | 
            -
                    past_key_value=past_key_value,
         | 
| 162 | 
            -
                    output_attentions=output_attentions,
         | 
| 163 | 
            -
                    use_cache=use_cache,
         | 
| 164 | 
            -
                    cu_seqlens=cu_seqlens,
         | 
| 165 | 
            -
                    max_seqlen=max_seqlen,
         | 
| 166 | 
            -
                )
         | 
| 167 | 
            -
                hidden_states = residual + hidden_states
         | 
| 168 | 
            -
             | 
| 169 | 
            -
                # Fully Connected
         | 
| 170 | 
            -
                residual = hidden_states
         | 
| 171 | 
            -
                hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 172 | 
            -
                hidden_states, router_logits = self.block_sparse_moe(hidden_states)
         | 
| 173 | 
            -
                hidden_states = residual + hidden_states
         | 
| 174 | 
            -
             | 
| 175 | 
            -
                outputs = (hidden_states,)
         | 
| 176 | 
            -
             | 
| 177 | 
            -
                if output_attentions:
         | 
| 178 | 
            -
                    outputs += (self_attn_weights,)
         | 
| 179 | 
            -
             | 
| 180 | 
            -
                if use_cache:
         | 
| 181 | 
            -
                    outputs += (present_key_value,)
         | 
| 182 | 
            -
             | 
| 183 | 
            -
                if output_router_logits:
         | 
| 184 | 
            -
                    outputs += (router_logits,)
         | 
| 185 | 
            -
             | 
| 186 | 
            -
                return outputs
         | 
| 187 | 
            -
             | 
| 188 | 
            -
             | 
| 189 | 
            -
            def mixtral_model_forward(
         | 
| 190 | 
            -
                self,
         | 
| 191 | 
            -
                input_ids: torch.LongTensor = None,
         | 
| 192 | 
            -
                attention_mask: Optional[torch.Tensor] = None,
         | 
| 193 | 
            -
                position_ids: Optional[torch.LongTensor] = None,
         | 
| 194 | 
            -
                past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 195 | 
            -
                inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 196 | 
            -
                use_cache: Optional[bool] = None,
         | 
| 197 | 
            -
                output_attentions: Optional[bool] = None,
         | 
| 198 | 
            -
                output_hidden_states: Optional[bool] = None,
         | 
| 199 | 
            -
                output_router_logits: Optional[bool] = None,
         | 
| 200 | 
            -
                return_dict: Optional[bool] = None,
         | 
| 201 | 
            -
            ) -> Union[Tuple, MoeModelOutputWithPast]:
         | 
| 202 | 
            -
                output_attentions = (
         | 
| 203 | 
            -
                    output_attentions
         | 
| 204 | 
            -
                    if output_attentions is not None
         | 
| 205 | 
            -
                    else self.config.output_attentions
         | 
| 206 | 
            -
                )
         | 
| 207 | 
            -
                output_router_logits = (
         | 
| 208 | 
            -
                    output_router_logits
         | 
| 209 | 
            -
                    if output_router_logits is not None
         | 
| 210 | 
            -
                    else self.config.output_router_logits
         | 
| 211 | 
            -
                )
         | 
| 212 | 
            -
                output_hidden_states = (
         | 
| 213 | 
            -
                    output_hidden_states
         | 
| 214 | 
            -
                    if output_hidden_states is not None
         | 
| 215 | 
            -
                    else self.config.output_hidden_states
         | 
| 216 | 
            -
                )
         | 
| 217 | 
            -
                use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 218 | 
            -
             | 
| 219 | 
            -
                return_dict = (
         | 
| 220 | 
            -
                    return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 221 | 
            -
                )
         | 
| 222 | 
            -
             | 
| 223 | 
            -
                # retrieve input_ids and inputs_embeds
         | 
| 224 | 
            -
                if input_ids is not None and inputs_embeds is not None:
         | 
| 225 | 
            -
                    raise ValueError(
         | 
| 226 | 
            -
                        "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
         | 
| 227 | 
            -
                    )
         | 
| 228 | 
            -
                if input_ids is not None:
         | 
| 229 | 
            -
                    batch_size, seq_length = input_ids.shape
         | 
| 230 | 
            -
                elif inputs_embeds is not None:
         | 
| 231 | 
            -
                    batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 232 | 
            -
                else:
         | 
| 233 | 
            -
                    raise ValueError(
         | 
| 234 | 
            -
                        "You have to specify either decoder_input_ids or decoder_inputs_embeds"
         | 
| 235 | 
            -
                    )
         | 
| 236 | 
            -
             | 
| 237 | 
            -
                past_key_values_length = 0
         | 
| 238 | 
            -
             | 
| 239 | 
            -
                if use_cache:
         | 
| 240 | 
            -
                    use_legacy_cache = not isinstance(past_key_values, Cache)
         | 
| 241 | 
            -
                    if use_legacy_cache:
         | 
| 242 | 
            -
                        past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 243 | 
            -
                    past_key_values_length = past_key_values.get_usable_length(seq_length)
         | 
| 244 | 
            -
             | 
| 245 | 
            -
                cu_seqlens = None
         | 
| 246 | 
            -
                max_seqlen = None
         | 
| 247 | 
            -
                if position_ids is None:
         | 
| 248 | 
            -
                    device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 249 | 
            -
                    position_ids = torch.arange(
         | 
| 250 | 
            -
                        past_key_values_length,
         | 
| 251 | 
            -
                        seq_length + past_key_values_length,
         | 
| 252 | 
            -
                        dtype=torch.long,
         | 
| 253 | 
            -
                        device=device,
         | 
| 254 | 
            -
                    )
         | 
| 255 | 
            -
                    position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
         | 
| 256 | 
            -
                else:
         | 
| 257 | 
            -
                    position_ids = position_ids.view(-1, seq_length).long()
         | 
| 258 | 
            -
                    cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
         | 
| 259 | 
            -
                    cu_seqlens = cu_seqlens.squeeze()
         | 
| 260 | 
            -
             | 
| 261 | 
            -
                if inputs_embeds is None:
         | 
| 262 | 
            -
                    inputs_embeds = self.embed_tokens(input_ids)
         | 
| 263 | 
            -
             | 
| 264 | 
            -
                if (
         | 
| 265 | 
            -
                    attention_mask is not None
         | 
| 266 | 
            -
                    and self._attn_implementation == "flash_attention_2"
         | 
| 267 | 
            -
                    and use_cache
         | 
| 268 | 
            -
                ):
         | 
| 269 | 
            -
                    is_padding_right = attention_mask[:, -1].sum().item() != batch_size
         | 
| 270 | 
            -
                    if is_padding_right:
         | 
| 271 | 
            -
                        raise ValueError(
         | 
| 272 | 
            -
                            "You are attempting to perform batched generation with padding_side='right'"
         | 
| 273 | 
            -
                            " this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
         | 
| 274 | 
            -
                            " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
         | 
| 275 | 
            -
                        )
         | 
| 276 | 
            -
             | 
| 277 | 
            -
                if self._attn_implementation == "flash_attention_2":
         | 
| 278 | 
            -
                    # 2d mask is passed through the layers
         | 
| 279 | 
            -
                    attention_mask = (
         | 
| 280 | 
            -
                        attention_mask
         | 
| 281 | 
            -
                        if (attention_mask is not None and 0 in attention_mask)
         | 
| 282 | 
            -
                        else None
         | 
| 283 | 
            -
                    )
         | 
| 284 | 
            -
                else:
         | 
| 285 | 
            -
                    # 4d mask is passed through the layers
         | 
| 286 | 
            -
                    attention_mask = _prepare_4d_causal_attention_mask(
         | 
| 287 | 
            -
                        attention_mask,
         | 
| 288 | 
            -
                        (batch_size, seq_length),
         | 
| 289 | 
            -
                        inputs_embeds,
         | 
| 290 | 
            -
                        past_key_values_length,
         | 
| 291 | 
            -
                        sliding_window=self.config.sliding_window,
         | 
| 292 | 
            -
                    )
         | 
| 293 | 
            -
             | 
| 294 | 
            -
                hidden_states = inputs_embeds
         | 
| 295 | 
            -
             | 
| 296 | 
            -
                if self.gradient_checkpointing and self.training:
         | 
| 297 | 
            -
                    if use_cache:
         | 
| 298 | 
            -
                        LOG.warning_once(
         | 
| 299 | 
            -
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 300 | 
            -
                        )
         | 
| 301 | 
            -
                        use_cache = False
         | 
| 302 | 
            -
             | 
| 303 | 
            -
                # decoder layers
         | 
| 304 | 
            -
                all_hidden_states = () if output_hidden_states else None
         | 
| 305 | 
            -
                all_self_attns = () if output_attentions else None
         | 
| 306 | 
            -
                all_router_logits = () if output_router_logits else None
         | 
| 307 | 
            -
                next_decoder_cache = None
         | 
| 308 | 
            -
             | 
| 309 | 
            -
                for decoder_layer in self.layers:
         | 
| 310 | 
            -
                    if output_hidden_states:
         | 
| 311 | 
            -
                        all_hidden_states += (hidden_states,)
         | 
| 312 | 
            -
             | 
| 313 | 
            -
                    if self.gradient_checkpointing and self.training:
         | 
| 314 | 
            -
                        layer_outputs = self._gradient_checkpointing_func(
         | 
| 315 | 
            -
                            decoder_layer.__call__,
         | 
| 316 | 
            -
                            hidden_states,
         | 
| 317 | 
            -
                            attention_mask,
         | 
| 318 | 
            -
                            position_ids,
         | 
| 319 | 
            -
                            past_key_values,
         | 
| 320 | 
            -
                            output_attentions,
         | 
| 321 | 
            -
                            output_router_logits,
         | 
| 322 | 
            -
                            use_cache,
         | 
| 323 | 
            -
                            cu_seqlens,
         | 
| 324 | 
            -
                            max_seqlen,
         | 
| 325 | 
            -
                        )
         | 
| 326 | 
            -
                    else:
         | 
| 327 | 
            -
                        layer_outputs = decoder_layer(
         | 
| 328 | 
            -
                            hidden_states,
         | 
| 329 | 
            -
                            attention_mask=attention_mask,
         | 
| 330 | 
            -
                            position_ids=position_ids,
         | 
| 331 | 
            -
                            past_key_value=past_key_values,
         | 
| 332 | 
            -
                            output_attentions=output_attentions,
         | 
| 333 | 
            -
                            output_router_logits=output_router_logits,
         | 
| 334 | 
            -
                            use_cache=use_cache,
         | 
| 335 | 
            -
                            cu_seqlens=cu_seqlens,
         | 
| 336 | 
            -
                            max_seqlen=max_seqlen,
         | 
| 337 | 
            -
                        )
         | 
| 338 | 
            -
             | 
| 339 | 
            -
                    hidden_states = layer_outputs[0]
         | 
| 340 | 
            -
             | 
| 341 | 
            -
                    if use_cache:
         | 
| 342 | 
            -
                        next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 343 | 
            -
             | 
| 344 | 
            -
                    if output_attentions:
         | 
| 345 | 
            -
                        all_self_attns += (layer_outputs[1],)
         | 
| 346 | 
            -
             | 
| 347 | 
            -
                    if output_router_logits:
         | 
| 348 | 
            -
                        all_router_logits += (layer_outputs[-1],)
         | 
| 349 | 
            -
             | 
| 350 | 
            -
                hidden_states = self.norm(hidden_states)
         | 
| 351 | 
            -
             | 
| 352 | 
            -
                # add hidden states from the last decoder layer
         | 
| 353 | 
            -
                if output_hidden_states:
         | 
| 354 | 
            -
                    all_hidden_states += (hidden_states,)
         | 
| 355 | 
            -
             | 
| 356 | 
            -
                next_cache = None
         | 
| 357 | 
            -
                if use_cache:
         | 
| 358 | 
            -
                    next_cache = (
         | 
| 359 | 
            -
                        next_decoder_cache.to_legacy_cache()
         | 
| 360 | 
            -
                        if use_legacy_cache
         | 
| 361 | 
            -
                        else next_decoder_cache
         | 
| 362 | 
            -
                    )
         | 
| 363 | 
            -
             | 
| 364 | 
            -
                if not return_dict:
         | 
| 365 | 
            -
                    return tuple(
         | 
| 366 | 
            -
                        v
         | 
| 367 | 
            -
                        for v in [
         | 
| 368 | 
            -
                            hidden_states,
         | 
| 369 | 
            -
                            next_cache,
         | 
| 370 | 
            -
                            all_hidden_states,
         | 
| 371 | 
            -
                            all_self_attns,
         | 
| 372 | 
            -
                            all_router_logits,
         | 
| 373 | 
            -
                        ]
         | 
| 374 | 
            -
                        if v is not None
         | 
| 375 | 
            -
                    )
         | 
| 376 | 
            -
             | 
| 377 | 
            -
                return MoeModelOutputWithPast(
         | 
| 378 | 
            -
                    last_hidden_state=hidden_states,
         | 
| 379 | 
            -
                    past_key_values=next_cache,
         | 
| 380 | 
            -
                    hidden_states=all_hidden_states,
         | 
| 381 | 
            -
                    attentions=all_self_attns,
         | 
| 382 | 
            -
                    router_logits=all_router_logits,
         | 
| 383 | 
            -
                )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        src/axolotl/monkeypatch/utils.py
    CHANGED
    
    | @@ -2,6 +2,40 @@ | |
| 2 | 
             
            Shared utils for the monkeypatches
         | 
| 3 | 
             
            """
         | 
| 4 | 
             
            import torch
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 5 |  | 
| 6 |  | 
| 7 | 
             
            def get_cu_seqlens(attn_mask):
         | 
|  | |
| 2 | 
             
            Shared utils for the monkeypatches
         | 
| 3 | 
             
            """
         | 
| 4 | 
             
            import torch
         | 
| 5 | 
            +
            import torch.nn.functional as F
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            @torch.jit.script
         | 
| 9 | 
            +
            def get_max_seqlen_in_batch(attention_mask: torch.Tensor) -> torch.Tensor:
         | 
| 10 | 
            +
                max_num = int(torch.max(attention_mask).item())
         | 
| 11 | 
            +
                batch_size, _ = attention_mask.shape
         | 
| 12 | 
            +
                counts = torch.zeros((batch_size, max_num), dtype=torch.int32)
         | 
| 13 | 
            +
             | 
| 14 | 
            +
                for i in range(1, max_num + 1):
         | 
| 15 | 
            +
                    mask = attention_mask == i
         | 
| 16 | 
            +
                    counts[:, i - 1] = torch.sum(mask, dim=-1).to(dtype=torch.int32)
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                result = counts.flatten()
         | 
| 19 | 
            +
                nonzero_indices = torch.nonzero(result).squeeze(-1)
         | 
| 20 | 
            +
                return result[nonzero_indices]
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            @torch.jit.script
         | 
| 24 | 
            +
            def get_unpad_data(attention_mask: torch.Tensor):
         | 
| 25 | 
            +
                device = attention_mask.device
         | 
| 26 | 
            +
                seqlens_in_batch = get_max_seqlen_in_batch(attention_mask)
         | 
| 27 | 
            +
                indices = torch.nonzero(attention_mask.flatten()).flatten()
         | 
| 28 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 29 | 
            +
                cu_seqlens = (
         | 
| 30 | 
            +
                    F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
         | 
| 31 | 
            +
                    .to(device=device)
         | 
| 32 | 
            +
                    .detach()
         | 
| 33 | 
            +
                )
         | 
| 34 | 
            +
                return (
         | 
| 35 | 
            +
                    indices,
         | 
| 36 | 
            +
                    cu_seqlens,
         | 
| 37 | 
            +
                    max_seqlen_in_batch,
         | 
| 38 | 
            +
                )
         | 
| 39 |  | 
| 40 |  | 
| 41 | 
             
            def get_cu_seqlens(attn_mask):
         | 
    	
        src/axolotl/utils/collators.py
    CHANGED
    
    | @@ -152,6 +152,33 @@ class BatchSamplerDataCollatorForSeq2Seq(DataCollatorForSeq2Seq): | |
| 152 | 
             
                    return super().__call__(features, return_tensors=return_tensors)
         | 
| 153 |  | 
| 154 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 155 | 
             
            @dataclass
         | 
| 156 | 
             
            class MambaDataCollator:
         | 
| 157 | 
             
                """
         | 
|  | |
| 152 | 
             
                    return super().__call__(features, return_tensors=return_tensors)
         | 
| 153 |  | 
| 154 |  | 
| 155 | 
            +
            @dataclass
         | 
| 156 | 
            +
            class V2BatchSamplerDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
         | 
| 157 | 
            +
                """
         | 
| 158 | 
            +
                Collator for multipack specific to the using the BatchSampler
         | 
| 159 | 
            +
                """
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                def __call__(self, features, return_tensors=None):
         | 
| 162 | 
            +
                    chunked_data = {}
         | 
| 163 | 
            +
                    for feature in features[0].keys():
         | 
| 164 | 
            +
                        if feature == "length":
         | 
| 165 | 
            +
                            continue
         | 
| 166 | 
            +
                        if feature == "attention_mask":
         | 
| 167 | 
            +
                            arrays = [
         | 
| 168 | 
            +
                                (i + 1) * np.array(item[feature])
         | 
| 169 | 
            +
                                for i, item in enumerate(features)
         | 
| 170 | 
            +
                                if feature in item
         | 
| 171 | 
            +
                            ]
         | 
| 172 | 
            +
                            chunked_data[feature] = np.concatenate(arrays)
         | 
| 173 | 
            +
                        else:
         | 
| 174 | 
            +
                            arrays = [
         | 
| 175 | 
            +
                                np.array(item[feature]) for item in features if feature in item
         | 
| 176 | 
            +
                            ]
         | 
| 177 | 
            +
                            chunked_data[feature] = np.concatenate(arrays)
         | 
| 178 | 
            +
                    features = [chunked_data]
         | 
| 179 | 
            +
                    return super().__call__(features, return_tensors=return_tensors)
         | 
| 180 | 
            +
             | 
| 181 | 
            +
             | 
| 182 | 
             
            @dataclass
         | 
| 183 | 
             
            class MambaDataCollator:
         | 
| 184 | 
             
                """
         | 
    	
        src/axolotl/utils/config.py
    CHANGED
    
    | @@ -1,12 +1,14 @@ | |
| 1 | 
             
            """Module for working with config dicts"""
         | 
| 2 | 
            -
             | 
| 3 | 
             
            import logging
         | 
| 4 | 
             
            import os
         | 
|  | |
| 5 |  | 
| 6 | 
             
            import torch
         | 
| 7 | 
             
            from transformers.utils import is_torch_bf16_gpu_available
         | 
| 8 |  | 
| 9 | 
             
            from axolotl.utils.bench import log_gpu_memory_usage
         | 
|  | |
| 10 | 
             
            from axolotl.utils.models import load_model_config
         | 
| 11 |  | 
| 12 | 
             
            LOG = logging.getLogger("axolotl")
         | 
| @@ -135,7 +137,7 @@ def normalize_config(cfg): | |
| 135 | 
             
                        ]
         | 
| 136 | 
             
                    )
         | 
| 137 | 
             
                    or cfg.is_mistral_derived_model
         | 
| 138 | 
            -
                    or "mistral" in cfg.base_model.lower()
         | 
| 139 | 
             
                    or (cfg.model_type and "mistral" in cfg.model_type.lower())
         | 
| 140 | 
             
                )
         | 
| 141 |  | 
| @@ -484,6 +486,40 @@ def validate_config(cfg): | |
| 484 | 
             
                        "max_memory and gpu_memory_limit are mutually exclusive and cannot be used together."
         | 
| 485 | 
             
                    )
         | 
| 486 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 487 | 
             
                # TODO
         | 
| 488 | 
             
                # MPT 7b
         | 
| 489 | 
             
                # https://github.com/facebookresearch/bitsandbytes/issues/25
         | 
|  | |
| 1 | 
             
            """Module for working with config dicts"""
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
             
            import logging
         | 
| 4 | 
             
            import os
         | 
| 5 | 
            +
            from pathlib import Path
         | 
| 6 |  | 
| 7 | 
             
            import torch
         | 
| 8 | 
             
            from transformers.utils import is_torch_bf16_gpu_available
         | 
| 9 |  | 
| 10 | 
             
            from axolotl.utils.bench import log_gpu_memory_usage
         | 
| 11 | 
            +
            from axolotl.utils.dict import DictDefault
         | 
| 12 | 
             
            from axolotl.utils.models import load_model_config
         | 
| 13 |  | 
| 14 | 
             
            LOG = logging.getLogger("axolotl")
         | 
|  | |
| 137 | 
             
                        ]
         | 
| 138 | 
             
                    )
         | 
| 139 | 
             
                    or cfg.is_mistral_derived_model
         | 
| 140 | 
            +
                    or "mistral" in cfg.base_model.lower().split("/")[-1]
         | 
| 141 | 
             
                    or (cfg.model_type and "mistral" in cfg.model_type.lower())
         | 
| 142 | 
             
                )
         | 
| 143 |  | 
|  | |
| 486 | 
             
                        "max_memory and gpu_memory_limit are mutually exclusive and cannot be used together."
         | 
| 487 | 
             
                    )
         | 
| 488 |  | 
| 489 | 
            +
                if (
         | 
| 490 | 
            +
                    cfg.unfrozen_parameters
         | 
| 491 | 
            +
                    and cfg.gradient_checkpointing_kwargs
         | 
| 492 | 
            +
                    and cfg.gradient_checkpointing_kwargs.use_reentrant is True
         | 
| 493 | 
            +
                ):
         | 
| 494 | 
            +
                    # https://github.com/huggingface/transformers/issues/21381
         | 
| 495 | 
            +
                    raise ValueError(
         | 
| 496 | 
            +
                        "`use_reentrant` must be false when used with partially frozen model."
         | 
| 497 | 
            +
                    )
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                if cfg.flash_attention and cfg.deepspeed and Path(cfg.deepspeed).is_file():
         | 
| 500 | 
            +
                    with open(cfg.deepspeed, encoding="utf-8") as file:
         | 
| 501 | 
            +
                        contents = file.read()
         | 
| 502 | 
            +
                        deepspeed_cfg: DictDefault = DictDefault(json.loads(contents))
         | 
| 503 | 
            +
                        if (
         | 
| 504 | 
            +
                            deepspeed_cfg.zero_optimization
         | 
| 505 | 
            +
                            and deepspeed_cfg.zero_optimization.stage == 3
         | 
| 506 | 
            +
                        ):
         | 
| 507 | 
            +
                            if not (
         | 
| 508 | 
            +
                                (
         | 
| 509 | 
            +
                                    deepspeed_cfg.bf16
         | 
| 510 | 
            +
                                    and deepspeed_cfg.bf16.enabled  # pylint: disable=no-member
         | 
| 511 | 
            +
                                    is True
         | 
| 512 | 
            +
                                )
         | 
| 513 | 
            +
                                or (
         | 
| 514 | 
            +
                                    deepspeed_cfg.fp16
         | 
| 515 | 
            +
                                    and deepspeed_cfg.fp16.enabled  # pylint: disable=no-member
         | 
| 516 | 
            +
                                    is True
         | 
| 517 | 
            +
                                )
         | 
| 518 | 
            +
                            ):
         | 
| 519 | 
            +
                                raise ValueError(
         | 
| 520 | 
            +
                                    "bf16.enabled or fp16.enabled must be set to true when using ZeRO-3 with flash-attention"
         | 
| 521 | 
            +
                                )
         | 
| 522 | 
            +
             | 
| 523 | 
             
                # TODO
         | 
| 524 | 
             
                # MPT 7b
         | 
| 525 | 
             
                # https://github.com/facebookresearch/bitsandbytes/issues/25
         | 
    	
        src/axolotl/utils/models.py
    CHANGED
    
    | @@ -305,12 +305,16 @@ def load_model( | |
| 305 | 
             
                        )
         | 
| 306 |  | 
| 307 | 
             
                # Modify mistral derived models
         | 
| 308 | 
            -
                if  | 
|  | |
|  | |
|  | |
|  | |
| 309 | 
             
                    from axolotl.monkeypatch.mistral_attn_hijack_flash import (
         | 
| 310 | 
             
                        replace_mistral_attn_with_flash_attn,
         | 
| 311 | 
             
                    )
         | 
| 312 |  | 
| 313 | 
            -
                    LOG.info("patching with flash attention")
         | 
| 314 | 
             
                    replace_mistral_attn_with_flash_attn(packed=cfg.sample_packing)
         | 
| 315 |  | 
| 316 | 
             
                if (
         | 
| @@ -322,7 +326,7 @@ def load_model( | |
| 322 | 
             
                        replace_mixtral_attn_with_multipack_flash_attn,
         | 
| 323 | 
             
                    )
         | 
| 324 |  | 
| 325 | 
            -
                    LOG.info("patching with flash attention")
         | 
| 326 | 
             
                    replace_mixtral_attn_with_multipack_flash_attn()
         | 
| 327 |  | 
| 328 | 
             
                if (
         | 
|  | |
| 305 | 
             
                        )
         | 
| 306 |  | 
| 307 | 
             
                # Modify mistral derived models
         | 
| 308 | 
            +
                if (
         | 
| 309 | 
            +
                    cfg.model_config_type == "mistral"
         | 
| 310 | 
            +
                    and cfg.flash_attention
         | 
| 311 | 
            +
                    and cfg.sample_packing
         | 
| 312 | 
            +
                ):
         | 
| 313 | 
             
                    from axolotl.monkeypatch.mistral_attn_hijack_flash import (
         | 
| 314 | 
             
                        replace_mistral_attn_with_flash_attn,
         | 
| 315 | 
             
                    )
         | 
| 316 |  | 
| 317 | 
            +
                    LOG.info("patching mistral with flash attention")
         | 
| 318 | 
             
                    replace_mistral_attn_with_flash_attn(packed=cfg.sample_packing)
         | 
| 319 |  | 
| 320 | 
             
                if (
         | 
|  | |
| 326 | 
             
                        replace_mixtral_attn_with_multipack_flash_attn,
         | 
| 327 | 
             
                    )
         | 
| 328 |  | 
| 329 | 
            +
                    LOG.info("patching mixtral with flash attention")
         | 
| 330 | 
             
                    replace_mixtral_attn_with_multipack_flash_attn()
         | 
| 331 |  | 
| 332 | 
             
                if (
         | 
    	
        src/axolotl/utils/trainer.py
    CHANGED
    
    | @@ -152,6 +152,7 @@ def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer): | |
| 152 | 
             
                        or (cfg.is_mistral_derived_model and cfg.flash_attention)
         | 
| 153 | 
             
                        or cfg.model_config_type == "mamba"
         | 
| 154 | 
             
                    ):
         | 
|  | |
| 155 | 
             
                        train_dataset = train_dataset.remove_columns("attention_mask")
         | 
| 156 | 
             
                        if eval_dataset:
         | 
| 157 | 
             
                            eval_dataset = eval_dataset.remove_columns("attention_mask")
         | 
|  | |
| 152 | 
             
                        or (cfg.is_mistral_derived_model and cfg.flash_attention)
         | 
| 153 | 
             
                        or cfg.model_config_type == "mamba"
         | 
| 154 | 
             
                    ):
         | 
| 155 | 
            +
                        LOG.info("dropping attention_mask column")
         | 
| 156 | 
             
                        train_dataset = train_dataset.remove_columns("attention_mask")
         | 
| 157 | 
             
                        if eval_dataset:
         | 
| 158 | 
             
                            eval_dataset = eval_dataset.remove_columns("attention_mask")
         | 
    	
        tests/e2e/patched/test_mixtral_samplepack.py
    CHANGED
    
    | @@ -7,8 +7,6 @@ import os | |
| 7 | 
             
            import unittest
         | 
| 8 | 
             
            from pathlib import Path
         | 
| 9 |  | 
| 10 | 
            -
            from transformers.utils import is_torch_bf16_gpu_available
         | 
| 11 | 
            -
             | 
| 12 | 
             
            from axolotl.cli import load_datasets
         | 
| 13 | 
             
            from axolotl.common.cli import TrainerCliArgs
         | 
| 14 | 
             
            from axolotl.train import train
         | 
| @@ -60,12 +58,9 @@ class TestMixtral(unittest.TestCase): | |
| 60 | 
             
                            "save_steps": 10,
         | 
| 61 | 
             
                            "eval_steps": 10,
         | 
| 62 | 
             
                            "sample_packing": True,
         | 
|  | |
| 63 | 
             
                        }
         | 
| 64 | 
             
                    )
         | 
| 65 | 
            -
                    if is_torch_bf16_gpu_available():
         | 
| 66 | 
            -
                        cfg.bf16 = True
         | 
| 67 | 
            -
                    else:
         | 
| 68 | 
            -
                        cfg.fp16 = True
         | 
| 69 | 
             
                    normalize_config(cfg)
         | 
| 70 | 
             
                    cli_args = TrainerCliArgs()
         | 
| 71 | 
             
                    dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
         | 
| @@ -101,23 +96,16 @@ class TestMixtral(unittest.TestCase): | |
| 101 | 
             
                            "save_steps": 10,
         | 
| 102 | 
             
                            "eval_steps": 10,
         | 
| 103 | 
             
                            "sample_packing": True,
         | 
|  | |
| 104 | 
             
                        }
         | 
| 105 | 
             
                    )
         | 
| 106 | 
            -
                    if is_torch_bf16_gpu_available():
         | 
| 107 | 
            -
                        cfg.bf16 = True
         | 
| 108 | 
            -
                    else:
         | 
| 109 | 
            -
                        cfg.fp16 = True
         | 
| 110 | 
             
                    normalize_config(cfg)
         | 
| 111 | 
             
                    cli_args = TrainerCliArgs()
         | 
| 112 | 
             
                    dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
         | 
| 113 |  | 
| 114 | 
             
                    model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
         | 
| 115 | 
             
                    assert (
         | 
| 116 | 
            -
                        " | 
| 117 | 
            -
                        in model.model.layers[0].self_attn.__class__.__module__
         | 
| 118 | 
            -
                    )
         | 
| 119 | 
            -
                    assert (
         | 
| 120 | 
            -
                        "MixtralMultipackFlashAttention2"
         | 
| 121 | 
             
                        in model.model.layers[0].self_attn.__class__.__name__
         | 
| 122 | 
             
                    )
         | 
| 123 | 
             
                    assert (Path(temp_dir) / "pytorch_model.bin").exists()
         | 
|  | |
| 7 | 
             
            import unittest
         | 
| 8 | 
             
            from pathlib import Path
         | 
| 9 |  | 
|  | |
|  | |
| 10 | 
             
            from axolotl.cli import load_datasets
         | 
| 11 | 
             
            from axolotl.common.cli import TrainerCliArgs
         | 
| 12 | 
             
            from axolotl.train import train
         | 
|  | |
| 58 | 
             
                            "save_steps": 10,
         | 
| 59 | 
             
                            "eval_steps": 10,
         | 
| 60 | 
             
                            "sample_packing": True,
         | 
| 61 | 
            +
                            "bf16": "auto",
         | 
| 62 | 
             
                        }
         | 
| 63 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
| 64 | 
             
                    normalize_config(cfg)
         | 
| 65 | 
             
                    cli_args = TrainerCliArgs()
         | 
| 66 | 
             
                    dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
         | 
|  | |
| 96 | 
             
                            "save_steps": 10,
         | 
| 97 | 
             
                            "eval_steps": 10,
         | 
| 98 | 
             
                            "sample_packing": True,
         | 
| 99 | 
            +
                            "bf16": "auto",
         | 
| 100 | 
             
                        }
         | 
| 101 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
| 102 | 
             
                    normalize_config(cfg)
         | 
| 103 | 
             
                    cli_args = TrainerCliArgs()
         | 
| 104 | 
             
                    dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
         | 
| 105 |  | 
| 106 | 
             
                    model, _ = train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
         | 
| 107 | 
             
                    assert (
         | 
| 108 | 
            +
                        "MixtralFlashAttention2"
         | 
|  | |
|  | |
|  | |
|  | |
| 109 | 
             
                        in model.model.layers[0].self_attn.__class__.__name__
         | 
| 110 | 
             
                    )
         | 
| 111 | 
             
                    assert (Path(temp_dir) / "pytorch_model.bin").exists()
         | 
    	
        tests/e2e/patched/test_model_patches.py
    CHANGED
    
    | @@ -52,11 +52,7 @@ class TestModelPatches(unittest.TestCase): | |
| 52 | 
             
                    model, _ = load_model(cfg, tokenizer, inference=cli_args.inference)
         | 
| 53 |  | 
| 54 | 
             
                    assert (
         | 
| 55 | 
            -
                        " | 
| 56 | 
            -
                        in model.model.layers[0].self_attn.__class__.__module__
         | 
| 57 | 
            -
                    )
         | 
| 58 | 
            -
                    assert (
         | 
| 59 | 
            -
                        "MixtralMultipackFlashAttention2"
         | 
| 60 | 
             
                        in model.model.layers[0].self_attn.__class__.__name__
         | 
| 61 | 
             
                    )
         | 
| 62 |  | 
|  | |
| 52 | 
             
                    model, _ = load_model(cfg, tokenizer, inference=cli_args.inference)
         | 
| 53 |  | 
| 54 | 
             
                    assert (
         | 
| 55 | 
            +
                        "MixtralFlashAttention2"
         | 
|  | |
|  | |
|  | |
|  | |
| 56 | 
             
                        in model.model.layers[0].self_attn.__class__.__name__
         | 
| 57 | 
             
                    )
         | 
| 58 |  | 
    	
        tests/monkeypatch/test_llama_attn_hijack_flash.py
    CHANGED
    
    | @@ -5,7 +5,12 @@ import unittest | |
| 5 |  | 
| 6 | 
             
            import torch
         | 
| 7 |  | 
| 8 | 
            -
            from axolotl.monkeypatch.utils import  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 9 |  | 
| 10 |  | 
| 11 | 
             
            class TestMonkeyPatchUtils(unittest.TestCase):
         | 
| @@ -25,6 +30,70 @@ class TestMonkeyPatchUtils(unittest.TestCase): | |
| 25 | 
             
                        torch.allclose(get_cu_seqlens_from_pos_ids(position_ids)[0], target_res)
         | 
| 26 | 
             
                    )
         | 
| 27 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 28 |  | 
| 29 | 
             
            if __name__ == "__main__":
         | 
| 30 | 
             
                unittest.main()
         | 
|  | |
| 5 |  | 
| 6 | 
             
            import torch
         | 
| 7 |  | 
| 8 | 
            +
            from axolotl.monkeypatch.utils import (
         | 
| 9 | 
            +
                get_cu_seqlens,
         | 
| 10 | 
            +
                get_cu_seqlens_from_pos_ids,
         | 
| 11 | 
            +
                get_max_seqlen_in_batch,
         | 
| 12 | 
            +
                get_unpad_data,
         | 
| 13 | 
            +
            )
         | 
| 14 |  | 
| 15 |  | 
| 16 | 
             
            class TestMonkeyPatchUtils(unittest.TestCase):
         | 
|  | |
| 30 | 
             
                        torch.allclose(get_cu_seqlens_from_pos_ids(position_ids)[0], target_res)
         | 
| 31 | 
             
                    )
         | 
| 32 |  | 
| 33 | 
            +
                def test_get_max_seqlen_in_batch(self):
         | 
| 34 | 
            +
                    attn_mask = torch.tensor([[1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 0, 0]])
         | 
| 35 | 
            +
                    target_res = torch.tensor([4, 3, 5, 2], dtype=torch.int32)
         | 
| 36 | 
            +
                    self.assertTrue(torch.allclose(get_max_seqlen_in_batch(attn_mask), target_res))
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                def test_get_unpad_data(self):
         | 
| 39 | 
            +
                    attn_mask = torch.tensor([[1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 0, 0]])
         | 
| 40 | 
            +
                    target_indices = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])
         | 
| 41 | 
            +
                    target_cu_seqlen = torch.tensor([0, 4, 7, 12, 14], dtype=torch.int32)
         | 
| 42 | 
            +
                    target_max_seqlen_in_batch = 5
         | 
| 43 | 
            +
                    indices, cu_seqlen, max_seqlen_in_batch = get_unpad_data(attn_mask)
         | 
| 44 | 
            +
                    self.assertTrue(torch.allclose(target_indices, indices))
         | 
| 45 | 
            +
                    self.assertTrue(torch.allclose(target_cu_seqlen, cu_seqlen))
         | 
| 46 | 
            +
                    self.assertEqual(target_max_seqlen_in_batch, max_seqlen_in_batch)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    attn_mask = torch.tensor(
         | 
| 49 | 
            +
                        [
         | 
| 50 | 
            +
                            [1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 0, 0],
         | 
| 51 | 
            +
                            [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5],
         | 
| 52 | 
            +
                        ]
         | 
| 53 | 
            +
                    )
         | 
| 54 | 
            +
                    target_indices = torch.tensor(
         | 
| 55 | 
            +
                        [
         | 
| 56 | 
            +
                            0,
         | 
| 57 | 
            +
                            1,
         | 
| 58 | 
            +
                            2,
         | 
| 59 | 
            +
                            3,
         | 
| 60 | 
            +
                            4,
         | 
| 61 | 
            +
                            5,
         | 
| 62 | 
            +
                            6,
         | 
| 63 | 
            +
                            7,
         | 
| 64 | 
            +
                            8,
         | 
| 65 | 
            +
                            9,
         | 
| 66 | 
            +
                            10,
         | 
| 67 | 
            +
                            11,
         | 
| 68 | 
            +
                            12,
         | 
| 69 | 
            +
                            13,
         | 
| 70 | 
            +
                            16,
         | 
| 71 | 
            +
                            17,
         | 
| 72 | 
            +
                            18,
         | 
| 73 | 
            +
                            19,
         | 
| 74 | 
            +
                            20,
         | 
| 75 | 
            +
                            21,
         | 
| 76 | 
            +
                            22,
         | 
| 77 | 
            +
                            23,
         | 
| 78 | 
            +
                            24,
         | 
| 79 | 
            +
                            25,
         | 
| 80 | 
            +
                            26,
         | 
| 81 | 
            +
                            27,
         | 
| 82 | 
            +
                            28,
         | 
| 83 | 
            +
                            29,
         | 
| 84 | 
            +
                            30,
         | 
| 85 | 
            +
                            31,
         | 
| 86 | 
            +
                        ]
         | 
| 87 | 
            +
                    )
         | 
| 88 | 
            +
                    target_cu_seqlen = torch.tensor(
         | 
| 89 | 
            +
                        [0, 4, 7, 12, 14, 17, 22, 24, 27, 30], dtype=torch.int32
         | 
| 90 | 
            +
                    )
         | 
| 91 | 
            +
                    target_max_seqlen_in_batch = 5
         | 
| 92 | 
            +
                    indices, cu_seqlen, max_seqlen_in_batch = get_unpad_data(attn_mask)
         | 
| 93 | 
            +
                    self.assertTrue(torch.allclose(target_indices, indices))
         | 
| 94 | 
            +
                    self.assertTrue(torch.allclose(target_cu_seqlen, cu_seqlen))
         | 
| 95 | 
            +
                    self.assertEqual(target_max_seqlen_in_batch, max_seqlen_in_batch)
         | 
| 96 | 
            +
             | 
| 97 |  | 
| 98 | 
             
            if __name__ == "__main__":
         | 
| 99 | 
             
                unittest.main()
         | 
