Merge branch 'main' into patch-4
Browse files- README.md +1 -1
- deepspeed/zero2.json +46 -0
- examples/code-llama/13b/lora.yml +67 -0
- examples/code-llama/13b/qlora.yml +69 -0
- examples/code-llama/34b/lora.yml +67 -0
- examples/code-llama/34b/qlora.yml +69 -0
- examples/code-llama/7b/lora.yml +67 -0
- examples/code-llama/7b/qlora.yml +69 -0
- examples/code-llama/README.md +22 -0
- examples/llama-2/relora.yml +73 -0
- scripts/finetune.py +2 -0
- src/axolotl/utils/trainer.py +2 -71
README.md
CHANGED
@@ -521,7 +521,7 @@ lr_quadratic_warmup:
|
|
521 |
logging_steps:
|
522 |
save_strategy: # set to `no` to skip checkpoint saves
|
523 |
save_steps: # leave empty to save at each epoch
|
524 |
-
eval_steps:
|
525 |
save_total_limit: # checkpoints saved at a time
|
526 |
max_steps:
|
527 |
|
|
|
521 |
logging_steps:
|
522 |
save_strategy: # set to `no` to skip checkpoint saves
|
523 |
save_steps: # leave empty to save at each epoch
|
524 |
+
eval_steps: # leave empty to eval at each epoch
|
525 |
save_total_limit: # checkpoints saved at a time
|
526 |
max_steps:
|
527 |
|
deepspeed/zero2.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zero_optimization": {
|
3 |
+
"stage": 2,
|
4 |
+
"offload_optimizer": {
|
5 |
+
"device": "cpu"
|
6 |
+
},
|
7 |
+
"contiguous_gradients": true,
|
8 |
+
"overlap_comm": true
|
9 |
+
},
|
10 |
+
"bf16": {
|
11 |
+
"enabled": "auto"
|
12 |
+
},
|
13 |
+
"fp16": {
|
14 |
+
"enabled": "auto",
|
15 |
+
"auto_cast": false,
|
16 |
+
"loss_scale": 0,
|
17 |
+
"initial_scale_power": 32,
|
18 |
+
"loss_scale_window": 1000,
|
19 |
+
"hysteresis": 2,
|
20 |
+
"min_loss_scale": 1
|
21 |
+
},
|
22 |
+
"optimizer": {
|
23 |
+
"type": "AdamW",
|
24 |
+
"params": {
|
25 |
+
"lr": "auto",
|
26 |
+
"betas": [
|
27 |
+
0.9,
|
28 |
+
0.999
|
29 |
+
],
|
30 |
+
"eps": 1e-8,
|
31 |
+
"weight_decay": "auto"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"scheduler": {
|
35 |
+
"type": "WarmupDecayLR",
|
36 |
+
"params": {
|
37 |
+
"warmup_min_lr": "auto",
|
38 |
+
"warmup_max_lr": "auto",
|
39 |
+
"warmup_num_steps": "auto",
|
40 |
+
"total_num_steps": "auto"
|
41 |
+
}
|
42 |
+
},
|
43 |
+
"train_batch_size": "auto",
|
44 |
+
"train_micro_batch_size_per_gpu": "auto",
|
45 |
+
"wall_clock_breakdown": false
|
46 |
+
}
|
examples/code-llama/13b/lora.yml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: codellama/CodeLlama-13b-hf
|
2 |
+
base_model_config: codellama/CodeLlama-13b-hf
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: CodeLlamaTokenizer
|
5 |
+
is_llama_derived_model: true
|
6 |
+
|
7 |
+
load_in_8bit: true
|
8 |
+
load_in_4bit: false
|
9 |
+
strict: false
|
10 |
+
|
11 |
+
datasets:
|
12 |
+
- path: mhenrichsen/alpaca_2k_test
|
13 |
+
type: alpaca
|
14 |
+
dataset_prepared_path: last_run_prepared
|
15 |
+
val_set_size: 0.01
|
16 |
+
output_dir: ./lora-out
|
17 |
+
|
18 |
+
sequence_len: 100000
|
19 |
+
sample_packing: true
|
20 |
+
|
21 |
+
adapter: lora
|
22 |
+
lora_model_dir:
|
23 |
+
lora_r: 32
|
24 |
+
lora_alpha: 16
|
25 |
+
lora_dropout: 0.05
|
26 |
+
lora_target_linear: true
|
27 |
+
lora_fan_in_fan_out:
|
28 |
+
|
29 |
+
wandb_project:
|
30 |
+
wandb_entity:
|
31 |
+
wandb_watch:
|
32 |
+
wandb_run_id:
|
33 |
+
wandb_log_model:
|
34 |
+
|
35 |
+
gradient_accumulation_steps: 4
|
36 |
+
micro_batch_size: 2
|
37 |
+
num_epochs: 3
|
38 |
+
optimizer: adamw_bnb_8bit
|
39 |
+
lr_scheduler: cosine
|
40 |
+
learning_rate: 0.0002
|
41 |
+
|
42 |
+
train_on_inputs: false
|
43 |
+
group_by_length: false
|
44 |
+
bf16: true
|
45 |
+
fp16: false
|
46 |
+
tf32: false
|
47 |
+
|
48 |
+
gradient_checkpointing: true
|
49 |
+
early_stopping_patience:
|
50 |
+
resume_from_checkpoint:
|
51 |
+
local_rank:
|
52 |
+
logging_steps: 1
|
53 |
+
xformers_attention:
|
54 |
+
flash_attention: true
|
55 |
+
|
56 |
+
warmup_steps: 10
|
57 |
+
eval_steps: 20
|
58 |
+
save_steps:
|
59 |
+
debug:
|
60 |
+
deepspeed:
|
61 |
+
weight_decay: 0.0
|
62 |
+
fsdp:
|
63 |
+
fsdp_config:
|
64 |
+
special_tokens:
|
65 |
+
bos_token: "<s>"
|
66 |
+
eos_token: "</s>"
|
67 |
+
unk_token: "<unk>"
|
examples/code-llama/13b/qlora.yml
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: codellama/CodeLlama-13b-hf
|
2 |
+
base_model_config: codellama/CodeLlama-13b-hf
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: CodeLlamaTokenizer
|
5 |
+
is_llama_derived_model: true
|
6 |
+
|
7 |
+
load_in_8bit: false
|
8 |
+
load_in_4bit: true
|
9 |
+
strict: false
|
10 |
+
|
11 |
+
datasets:
|
12 |
+
- path: mhenrichsen/alpaca_2k_test
|
13 |
+
type: alpaca
|
14 |
+
dataset_prepared_path: last_run_prepared
|
15 |
+
val_set_size: 0.01
|
16 |
+
output_dir: ./qlora-out
|
17 |
+
|
18 |
+
adapter: qlora
|
19 |
+
lora_model_dir:
|
20 |
+
|
21 |
+
sequence_len: 100000
|
22 |
+
sample_packing: true
|
23 |
+
|
24 |
+
lora_r: 32
|
25 |
+
lora_alpha: 16
|
26 |
+
lora_dropout: 0.05
|
27 |
+
lora_target_modules:
|
28 |
+
lora_target_linear: true
|
29 |
+
lora_fan_in_fan_out:
|
30 |
+
|
31 |
+
wandb_project:
|
32 |
+
wandb_entity:
|
33 |
+
wandb_watch:
|
34 |
+
wandb_run_id:
|
35 |
+
wandb_log_model:
|
36 |
+
|
37 |
+
gradient_accumulation_steps: 4
|
38 |
+
micro_batch_size: 2
|
39 |
+
num_epochs: 3
|
40 |
+
optimizer: paged_adamw_32bit
|
41 |
+
lr_scheduler: cosine
|
42 |
+
learning_rate: 0.0002
|
43 |
+
|
44 |
+
train_on_inputs: false
|
45 |
+
group_by_length: false
|
46 |
+
bf16: true
|
47 |
+
fp16: false
|
48 |
+
tf32: false
|
49 |
+
|
50 |
+
gradient_checkpointing: true
|
51 |
+
early_stopping_patience:
|
52 |
+
resume_from_checkpoint:
|
53 |
+
local_rank:
|
54 |
+
logging_steps: 1
|
55 |
+
xformers_attention:
|
56 |
+
flash_attention: true
|
57 |
+
|
58 |
+
warmup_steps: 10
|
59 |
+
eval_steps: 20
|
60 |
+
save_steps:
|
61 |
+
debug:
|
62 |
+
deepspeed:
|
63 |
+
weight_decay: 0.0
|
64 |
+
fsdp:
|
65 |
+
fsdp_config:
|
66 |
+
special_tokens:
|
67 |
+
bos_token: "<s>"
|
68 |
+
eos_token: "</s>"
|
69 |
+
unk_token: "<unk>"
|
examples/code-llama/34b/lora.yml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: codellama/CodeLlama-34b-hf
|
2 |
+
base_model_config: codellama/CodeLlama-34b-hf
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: CodeLlamaTokenizer
|
5 |
+
is_llama_derived_model: true
|
6 |
+
|
7 |
+
load_in_8bit: true
|
8 |
+
load_in_4bit: false
|
9 |
+
strict: false
|
10 |
+
|
11 |
+
datasets:
|
12 |
+
- path: mhenrichsen/alpaca_2k_test
|
13 |
+
type: alpaca
|
14 |
+
dataset_prepared_path: last_run_prepared
|
15 |
+
val_set_size: 0.01
|
16 |
+
output_dir: ./lora-out
|
17 |
+
|
18 |
+
sequence_len: 100000
|
19 |
+
sample_packing: true
|
20 |
+
|
21 |
+
adapter: lora
|
22 |
+
lora_model_dir:
|
23 |
+
lora_r: 32
|
24 |
+
lora_alpha: 16
|
25 |
+
lora_dropout: 0.05
|
26 |
+
lora_target_linear: true
|
27 |
+
lora_fan_in_fan_out:
|
28 |
+
|
29 |
+
wandb_project:
|
30 |
+
wandb_entity:
|
31 |
+
wandb_watch:
|
32 |
+
wandb_run_id:
|
33 |
+
wandb_log_model:
|
34 |
+
|
35 |
+
gradient_accumulation_steps: 4
|
36 |
+
micro_batch_size: 2
|
37 |
+
num_epochs: 3
|
38 |
+
optimizer: adamw_bnb_8bit
|
39 |
+
lr_scheduler: cosine
|
40 |
+
learning_rate: 0.0002
|
41 |
+
|
42 |
+
train_on_inputs: false
|
43 |
+
group_by_length: false
|
44 |
+
bf16: true
|
45 |
+
fp16: false
|
46 |
+
tf32: false
|
47 |
+
|
48 |
+
gradient_checkpointing: true
|
49 |
+
early_stopping_patience:
|
50 |
+
resume_from_checkpoint:
|
51 |
+
local_rank:
|
52 |
+
logging_steps: 1
|
53 |
+
xformers_attention:
|
54 |
+
flash_attention: true
|
55 |
+
|
56 |
+
warmup_steps: 10
|
57 |
+
eval_steps: 20
|
58 |
+
save_steps:
|
59 |
+
debug:
|
60 |
+
deepspeed:
|
61 |
+
weight_decay: 0.0
|
62 |
+
fsdp:
|
63 |
+
fsdp_config:
|
64 |
+
special_tokens:
|
65 |
+
bos_token: "<s>"
|
66 |
+
eos_token: "</s>"
|
67 |
+
unk_token: "<unk>"
|
examples/code-llama/34b/qlora.yml
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: codellama/CodeLlama-34b-hf
|
2 |
+
base_model_config: codellama/CodeLlama-34b-hf
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: CodeLlamaTokenizer
|
5 |
+
is_llama_derived_model: true
|
6 |
+
|
7 |
+
load_in_8bit: false
|
8 |
+
load_in_4bit: true
|
9 |
+
strict: false
|
10 |
+
|
11 |
+
datasets:
|
12 |
+
- path: mhenrichsen/alpaca_2k_test
|
13 |
+
type: alpaca
|
14 |
+
dataset_prepared_path: last_run_prepared
|
15 |
+
val_set_size: 0.01
|
16 |
+
output_dir: ./qlora-out
|
17 |
+
|
18 |
+
adapter: qlora
|
19 |
+
lora_model_dir:
|
20 |
+
|
21 |
+
sequence_len: 100000
|
22 |
+
sample_packing: true
|
23 |
+
|
24 |
+
lora_r: 32
|
25 |
+
lora_alpha: 16
|
26 |
+
lora_dropout: 0.05
|
27 |
+
lora_target_modules:
|
28 |
+
lora_target_linear: true
|
29 |
+
lora_fan_in_fan_out:
|
30 |
+
|
31 |
+
wandb_project:
|
32 |
+
wandb_entity:
|
33 |
+
wandb_watch:
|
34 |
+
wandb_run_id:
|
35 |
+
wandb_log_model:
|
36 |
+
|
37 |
+
gradient_accumulation_steps: 4
|
38 |
+
micro_batch_size: 2
|
39 |
+
num_epochs: 3
|
40 |
+
optimizer: paged_adamw_32bit
|
41 |
+
lr_scheduler: cosine
|
42 |
+
learning_rate: 0.0002
|
43 |
+
|
44 |
+
train_on_inputs: false
|
45 |
+
group_by_length: false
|
46 |
+
bf16: true
|
47 |
+
fp16: false
|
48 |
+
tf32: false
|
49 |
+
|
50 |
+
gradient_checkpointing: true
|
51 |
+
early_stopping_patience:
|
52 |
+
resume_from_checkpoint:
|
53 |
+
local_rank:
|
54 |
+
logging_steps: 1
|
55 |
+
xformers_attention:
|
56 |
+
flash_attention: true
|
57 |
+
|
58 |
+
warmup_steps: 10
|
59 |
+
eval_steps: 20
|
60 |
+
save_steps:
|
61 |
+
debug:
|
62 |
+
deepspeed:
|
63 |
+
weight_decay: 0.0
|
64 |
+
fsdp:
|
65 |
+
fsdp_config:
|
66 |
+
special_tokens:
|
67 |
+
bos_token: "<s>"
|
68 |
+
eos_token: "</s>"
|
69 |
+
unk_token: "<unk>"
|
examples/code-llama/7b/lora.yml
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: codellama/CodeLlama-7b-hf
|
2 |
+
base_model_config: codellama/CodeLlama-7b-hf
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: CodeLlamaTokenizer
|
5 |
+
is_llama_derived_model: true
|
6 |
+
|
7 |
+
load_in_8bit: true
|
8 |
+
load_in_4bit: false
|
9 |
+
strict: false
|
10 |
+
|
11 |
+
datasets:
|
12 |
+
- path: mhenrichsen/alpaca_2k_test
|
13 |
+
type: alpaca
|
14 |
+
dataset_prepared_path: last_run_prepared
|
15 |
+
val_set_size: 0.01
|
16 |
+
output_dir: ./lora-out
|
17 |
+
|
18 |
+
sequence_len: 100000
|
19 |
+
sample_packing: true
|
20 |
+
|
21 |
+
adapter: lora
|
22 |
+
lora_model_dir:
|
23 |
+
lora_r: 32
|
24 |
+
lora_alpha: 16
|
25 |
+
lora_dropout: 0.05
|
26 |
+
lora_target_linear: true
|
27 |
+
lora_fan_in_fan_out:
|
28 |
+
|
29 |
+
wandb_project:
|
30 |
+
wandb_entity:
|
31 |
+
wandb_watch:
|
32 |
+
wandb_run_id:
|
33 |
+
wandb_log_model:
|
34 |
+
|
35 |
+
gradient_accumulation_steps: 4
|
36 |
+
micro_batch_size: 2
|
37 |
+
num_epochs: 3
|
38 |
+
optimizer: adamw_bnb_8bit
|
39 |
+
lr_scheduler: cosine
|
40 |
+
learning_rate: 0.0002
|
41 |
+
|
42 |
+
train_on_inputs: false
|
43 |
+
group_by_length: false
|
44 |
+
bf16: true
|
45 |
+
fp16: false
|
46 |
+
tf32: false
|
47 |
+
|
48 |
+
gradient_checkpointing: true
|
49 |
+
early_stopping_patience:
|
50 |
+
resume_from_checkpoint:
|
51 |
+
local_rank:
|
52 |
+
logging_steps: 1
|
53 |
+
xformers_attention:
|
54 |
+
flash_attention: true
|
55 |
+
|
56 |
+
warmup_steps: 10
|
57 |
+
eval_steps: 20
|
58 |
+
save_steps:
|
59 |
+
debug:
|
60 |
+
deepspeed:
|
61 |
+
weight_decay: 0.0
|
62 |
+
fsdp:
|
63 |
+
fsdp_config:
|
64 |
+
special_tokens:
|
65 |
+
bos_token: "<s>"
|
66 |
+
eos_token: "</s>"
|
67 |
+
unk_token: "<unk>"
|
examples/code-llama/7b/qlora.yml
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: codellama/CodeLlama-7b-hf
|
2 |
+
base_model_config: codellama/CodeLlama-7b-hf
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: CodeLlamaTokenizer
|
5 |
+
is_llama_derived_model: true
|
6 |
+
|
7 |
+
load_in_8bit: false
|
8 |
+
load_in_4bit: true
|
9 |
+
strict: false
|
10 |
+
|
11 |
+
datasets:
|
12 |
+
- path: mhenrichsen/alpaca_2k_test
|
13 |
+
type: alpaca
|
14 |
+
dataset_prepared_path: last_run_prepared
|
15 |
+
val_set_size: 0.01
|
16 |
+
output_dir: ./qlora-out
|
17 |
+
|
18 |
+
adapter: qlora
|
19 |
+
lora_model_dir:
|
20 |
+
|
21 |
+
sequence_len: 100000
|
22 |
+
sample_packing: true
|
23 |
+
|
24 |
+
lora_r: 32
|
25 |
+
lora_alpha: 16
|
26 |
+
lora_dropout: 0.05
|
27 |
+
lora_target_modules:
|
28 |
+
lora_target_linear: true
|
29 |
+
lora_fan_in_fan_out:
|
30 |
+
|
31 |
+
wandb_project:
|
32 |
+
wandb_entity:
|
33 |
+
wandb_watch:
|
34 |
+
wandb_run_id:
|
35 |
+
wandb_log_model:
|
36 |
+
|
37 |
+
gradient_accumulation_steps: 4
|
38 |
+
micro_batch_size: 2
|
39 |
+
num_epochs: 3
|
40 |
+
optimizer: paged_adamw_32bit
|
41 |
+
lr_scheduler: cosine
|
42 |
+
learning_rate: 0.0002
|
43 |
+
|
44 |
+
train_on_inputs: false
|
45 |
+
group_by_length: false
|
46 |
+
bf16: true
|
47 |
+
fp16: false
|
48 |
+
tf32: false
|
49 |
+
|
50 |
+
gradient_checkpointing: true
|
51 |
+
early_stopping_patience:
|
52 |
+
resume_from_checkpoint:
|
53 |
+
local_rank:
|
54 |
+
logging_steps: 1
|
55 |
+
xformers_attention:
|
56 |
+
flash_attention: true
|
57 |
+
|
58 |
+
warmup_steps: 10
|
59 |
+
eval_steps: 20
|
60 |
+
save_steps:
|
61 |
+
debug:
|
62 |
+
deepspeed:
|
63 |
+
weight_decay: 0.0
|
64 |
+
fsdp:
|
65 |
+
fsdp_config:
|
66 |
+
special_tokens:
|
67 |
+
bos_token: "<s>"
|
68 |
+
eos_token: "</s>"
|
69 |
+
unk_token: "<unk>"
|
examples/code-llama/README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Overview
|
2 |
+
|
3 |
+
This is an example of CodeLLaMA configuration for 7b, 13b and 34b.
|
4 |
+
|
5 |
+
The 7b variant fits on any 24GB VRAM GPU and will take up about 17 GB of VRAM during training if using qlora and 20 GB if using lora. On a RTX 4090 it trains 3 epochs of the default dataset in about 15 minutes.
|
6 |
+
|
7 |
+
The 13b variant will fit if you change these settings to these values:
|
8 |
+
gradient_accumulation_steps: 2
|
9 |
+
micro_batch_size: 1
|
10 |
+
|
11 |
+
The 34b variant does not fit on 24GB of VRAM - you will need something with +40 gb VRAM that also supports flash attention v2 - A6000 or A100 are good choices.
|
12 |
+
|
13 |
+
```shell
|
14 |
+
accelerate launch scripts/finetune.py examples/code-llama/[MODEL_SIZE]/qlora.yml
|
15 |
+
|
16 |
+
```
|
17 |
+
or
|
18 |
+
|
19 |
+
```shell
|
20 |
+
accelerate launch scripts/finetune.py examples/code-llama/[MODEL_SIZE]/lora.yml
|
21 |
+
|
22 |
+
```
|
examples/llama-2/relora.yml
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: meta-llama/Llama-2-7b-hf
|
2 |
+
base_model_config: meta-llama/Llama-2-7b-hf
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: LlamaTokenizer
|
5 |
+
is_llama_derived_model: true
|
6 |
+
|
7 |
+
load_in_8bit: false
|
8 |
+
load_in_4bit: true
|
9 |
+
strict: false
|
10 |
+
|
11 |
+
datasets:
|
12 |
+
- path: teknium/GPT4-LLM-Cleaned
|
13 |
+
type: alpaca
|
14 |
+
dataset_prepared_path: last_run_prepared
|
15 |
+
val_set_size: 0.01
|
16 |
+
output_dir: ./relora-out
|
17 |
+
|
18 |
+
adapter: qlora
|
19 |
+
lora_model_dir:
|
20 |
+
|
21 |
+
sequence_len: 4096
|
22 |
+
sample_packing: true
|
23 |
+
|
24 |
+
lora_r: 8
|
25 |
+
lora_alpha: 16
|
26 |
+
lora_dropout: 0.05
|
27 |
+
lora_target_modules:
|
28 |
+
lora_target_linear: true
|
29 |
+
lora_fan_in_fan_out:
|
30 |
+
|
31 |
+
relora_steps: 150
|
32 |
+
relora_warmup_steps: 10
|
33 |
+
relora_cpu_offload: false
|
34 |
+
|
35 |
+
wandb_project:
|
36 |
+
wandb_entity:
|
37 |
+
wandb_watch:
|
38 |
+
wandb_run_id:
|
39 |
+
wandb_log_model:
|
40 |
+
|
41 |
+
gradient_accumulation_steps: 4
|
42 |
+
micro_batch_size: 4
|
43 |
+
num_epochs: 3
|
44 |
+
optimizer: adamw_bnb_8bit
|
45 |
+
lr_scheduler: cosine
|
46 |
+
learning_rate: 0.0002
|
47 |
+
|
48 |
+
train_on_inputs: false
|
49 |
+
group_by_length: false
|
50 |
+
bf16: true
|
51 |
+
fp16: false
|
52 |
+
tf32: false
|
53 |
+
|
54 |
+
gradient_checkpointing: true
|
55 |
+
early_stopping_patience:
|
56 |
+
resume_from_checkpoint:
|
57 |
+
local_rank:
|
58 |
+
logging_steps: 1
|
59 |
+
xformers_attention:
|
60 |
+
flash_attention: true
|
61 |
+
|
62 |
+
warmup_steps: 10
|
63 |
+
eval_steps: 20
|
64 |
+
save_steps: 50
|
65 |
+
debug:
|
66 |
+
deepspeed:
|
67 |
+
weight_decay: 0.0
|
68 |
+
fsdp:
|
69 |
+
fsdp_config:
|
70 |
+
special_tokens:
|
71 |
+
bos_token: "<s>"
|
72 |
+
eos_token: "</s>"
|
73 |
+
unk_token: "<unk>"
|
scripts/finetune.py
CHANGED
@@ -82,6 +82,8 @@ def do_inference(cfg, model, tokenizer, prompter: Optional[str]):
|
|
82 |
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
|
83 |
)
|
84 |
|
|
|
|
|
85 |
while True:
|
86 |
print("=" * 80)
|
87 |
# support for multiline inputs
|
|
|
82 |
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
|
83 |
)
|
84 |
|
85 |
+
model = model.to(cfg.device)
|
86 |
+
|
87 |
while True:
|
88 |
print("=" * 80)
|
89 |
# support for multiline inputs
|
src/axolotl/utils/trainer.py
CHANGED
@@ -10,19 +10,13 @@ from functools import partial
|
|
10 |
from pathlib import Path
|
11 |
from typing import Optional, Union
|
12 |
|
13 |
-
import bitsandbytes as bnb
|
14 |
import numpy as np
|
15 |
import torch.cuda
|
16 |
-
import transformers
|
17 |
from datasets import Dataset, set_caching_enabled
|
18 |
-
from torch import nn
|
19 |
from torch.optim.lr_scheduler import OneCycleLR
|
20 |
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
|
21 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
22 |
-
from transformers.trainer_pt_utils import
|
23 |
-
SequentialDistributedSampler,
|
24 |
-
get_parameter_names,
|
25 |
-
)
|
26 |
|
27 |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
28 |
from axolotl.utils.callbacks import (
|
@@ -32,10 +26,7 @@ from axolotl.utils.callbacks import (
|
|
32 |
)
|
33 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
34 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
35 |
-
from axolotl.utils.schedulers import
|
36 |
-
InterpolatingLogScheduler,
|
37 |
-
get_cosine_schedule_with_quadratic_warmup,
|
38 |
-
)
|
39 |
|
40 |
LOG = logging.getLogger("axolotl")
|
41 |
|
@@ -570,66 +561,6 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
570 |
if Path(cfg.torchdistx_path).exists():
|
571 |
sys.path.append(cfg.torchdistx_path)
|
572 |
importlib.import_module("torchdistx")
|
573 |
-
if (
|
574 |
-
cfg.optimizer == "adamw_bnb_8bit"
|
575 |
-
and not cfg.gptq
|
576 |
-
and "deepspeed" not in training_arguments_kwargs
|
577 |
-
and not cfg.fsdp
|
578 |
-
):
|
579 |
-
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
|
580 |
-
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
581 |
-
optimizer_grouped_parameters = [
|
582 |
-
{
|
583 |
-
"params": [
|
584 |
-
p
|
585 |
-
for n, p in model.named_parameters()
|
586 |
-
if (n in decay_parameters and p.requires_grad)
|
587 |
-
],
|
588 |
-
"weight_decay": training_args.weight_decay,
|
589 |
-
},
|
590 |
-
{
|
591 |
-
"params": [
|
592 |
-
p
|
593 |
-
for n, p in model.named_parameters()
|
594 |
-
if (n not in decay_parameters and p.requires_grad)
|
595 |
-
],
|
596 |
-
"weight_decay": 0.0,
|
597 |
-
},
|
598 |
-
]
|
599 |
-
|
600 |
-
optimizer = bnb.optim.Adam8bit(
|
601 |
-
optimizer_grouped_parameters,
|
602 |
-
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
603 |
-
eps=training_args.adam_epsilon,
|
604 |
-
lr=training_args.learning_rate,
|
605 |
-
)
|
606 |
-
|
607 |
-
if cfg.lr_scheduler == "one_cycle":
|
608 |
-
lr_scheduler_kwargs = (
|
609 |
-
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
|
610 |
-
)
|
611 |
-
lr_scheduler = OneCycleLR(
|
612 |
-
optimizer,
|
613 |
-
cfg.learning_rate,
|
614 |
-
total_steps=total_num_steps,
|
615 |
-
epochs=cfg.num_epochs,
|
616 |
-
div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6,
|
617 |
-
**lr_scheduler_kwargs,
|
618 |
-
)
|
619 |
-
elif cfg.lr_scheduler == "log_sweep":
|
620 |
-
lr_scheduler = InterpolatingLogScheduler(
|
621 |
-
optimizer,
|
622 |
-
cfg.warmup_steps,
|
623 |
-
cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
|
624 |
-
cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
|
625 |
-
)
|
626 |
-
else:
|
627 |
-
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
|
628 |
-
optimizer,
|
629 |
-
training_args.warmup_steps,
|
630 |
-
total_num_steps,
|
631 |
-
)
|
632 |
-
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)
|
633 |
|
634 |
callbacks = []
|
635 |
callbacks.append(GPUStatsCallback(cfg))
|
|
|
10 |
from pathlib import Path
|
11 |
from typing import Optional, Union
|
12 |
|
|
|
13 |
import numpy as np
|
14 |
import torch.cuda
|
|
|
15 |
from datasets import Dataset, set_caching_enabled
|
|
|
16 |
from torch.optim.lr_scheduler import OneCycleLR
|
17 |
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
|
18 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
19 |
+
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
|
|
|
|
|
|
20 |
|
21 |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
22 |
from axolotl.utils.callbacks import (
|
|
|
26 |
)
|
27 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
28 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
29 |
+
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
|
|
|
|
|
|
30 |
|
31 |
LOG = logging.getLogger("axolotl")
|
32 |
|
|
|
561 |
if Path(cfg.torchdistx_path).exists():
|
562 |
sys.path.append(cfg.torchdistx_path)
|
563 |
importlib.import_module("torchdistx")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
|
565 |
callbacks = []
|
566 |
callbacks.append(GPUStatsCallback(cfg))
|