standardize attn hijack patches (#381)
Browse files* split sdp attn into its own patch
* sync xformers patch to follow shared format and be diffable
* update flash-attn patch for 70B/GQA and inference using helper from flash-attn tests
* speed up flash-attn inference
* fix patch to check position ids and don't use multipack for evals
* copy LlamaModel.forward and LlamaDecoderLayer.forward into monkeypatch
* update forwards so we only calculate cu_seqlens once
* enable eval dataloader using multipack again
* fix the patch to work properly and work with FSDP
---------
Co-authored-by: Wing Lian <[email protected]>
    	
        src/axolotl/monkeypatch/llama_attn_hijack_flash.py
    CHANGED
    
    | @@ -2,26 +2,63 @@ | |
| 2 |  | 
| 3 | 
             
            # copied from https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py
         | 
| 4 |  | 
| 5 | 
            -
             | 
|  | |
| 6 |  | 
| 7 | 
             
            import torch
         | 
|  | |
| 8 | 
             
            import transformers
         | 
| 9 | 
             
            from einops import rearrange
         | 
| 10 | 
             
            from flash_attn.bert_padding import pad_input, unpad_input
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 |  | 
| 12 | 
             
            try:
         | 
| 13 | 
            -
                from flash_attn.flash_attn_interface import  | 
|  | |
|  | |
|  | |
|  | |
| 14 | 
             
            except ImportError:
         | 
|  | |
|  | |
|  | |
| 15 | 
             
                from flash_attn.flash_attn_interface import (
         | 
| 16 | 
             
                    flash_attn_unpadded_qkvpacked_func as flash_attn_varlen_qkvpacked_func,
         | 
| 17 | 
             
                )
         | 
| 18 |  | 
| 19 | 
            -
            from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
         | 
| 20 |  | 
| 21 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 22 |  | 
| 23 |  | 
| 24 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 25 | 
             
                self,
         | 
| 26 | 
             
                hidden_states: torch.Tensor,
         | 
| 27 | 
             
                attention_mask: Optional[torch.Tensor] = None,
         | 
| @@ -29,6 +66,8 @@ def forward( | |
| 29 | 
             
                past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 30 | 
             
                output_attentions: bool = False,
         | 
| 31 | 
             
                use_cache: bool = False,
         | 
|  | |
|  | |
| 32 | 
             
            ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 33 | 
             
                """Input shape: Batch x Time x Channel
         | 
| 34 |  | 
| @@ -37,124 +76,523 @@ def forward( | |
| 37 | 
             
                # pylint: disable=duplicate-code
         | 
| 38 | 
             
                bsz, q_len, _ = hidden_states.size()
         | 
| 39 |  | 
| 40 | 
            -
                 | 
| 41 | 
            -
                    self. | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
                    self. | 
| 47 | 
            -
                     | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
                    self.v_proj( | 
| 52 | 
            -
             | 
| 53 | 
            -
                     | 
| 54 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 55 | 
             
                # [bsz, q_len, nh, hd]
         | 
| 56 | 
             
                # [bsz, nh, q_len, hd]
         | 
| 57 |  | 
| 58 | 
             
                kv_seq_len = key_states.shape[-2]
         | 
| 59 | 
            -
                 | 
|  | |
| 60 |  | 
| 61 | 
             
                cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 62 | 
             
                query_states, key_states = apply_rotary_pos_emb(
         | 
| 63 | 
             
                    query_states, key_states, cos, sin, position_ids
         | 
| 64 | 
             
                )
         | 
| 65 | 
             
                # [bsz, nh, t, hd]
         | 
| 66 | 
            -
             | 
| 67 | 
            -
                 | 
| 68 | 
            -
             | 
| 69 | 
            -
             | 
| 70 | 
            -
             | 
| 71 | 
            -
             | 
| 72 | 
            -
                 | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
                 | 
| 76 | 
            -
                 | 
| 77 | 
            -
             | 
| 78 | 
            -
                 | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
                if key_padding_mask is None:
         | 
| 82 | 
            -
                    qkv = rearrange(qkv, "b s ... -> (b s) ...")
         | 
| 83 | 
            -
                    max_s = q_len
         | 
| 84 | 
            -
                    cu_q_lens = torch.arange(
         | 
| 85 | 
            -
                        0,
         | 
| 86 | 
            -
                        (bsz + 1) * q_len,
         | 
| 87 | 
            -
                        step=q_len,
         | 
| 88 | 
            -
                        dtype=torch.int32,
         | 
| 89 | 
            -
                        device=qkv.device,
         | 
| 90 | 
            -
                    )
         | 
| 91 | 
            -
                    output = flash_attn_varlen_qkvpacked_func(
         | 
| 92 | 
            -
                        qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
         | 
| 93 | 
             
                    )
         | 
| 94 | 
            -
             | 
| 95 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 96 | 
             
                    # special handling using sample packing
         | 
|  | |
|  | |
|  | |
|  | |
| 97 | 
             
                    qkv = rearrange(qkv, "b s ... -> (b s) ...")
         | 
| 98 | 
            -
                    cu_q_lens, max_s = get_cu_seqlens_from_pos_ids(position_ids)
         | 
| 99 | 
            -
                    cu_q_lens = cu_q_lens.squeeze()
         | 
| 100 |  | 
| 101 | 
             
                    output = flash_attn_varlen_qkvpacked_func(
         | 
| 102 | 
            -
                        qkv,  | 
| 103 | 
             
                    )
         | 
| 104 | 
             
                    output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
         | 
| 105 | 
            -
                 | 
| 106 | 
            -
                     | 
| 107 | 
            -
             | 
| 108 | 
            -
                     | 
| 109 | 
            -
                     | 
| 110 | 
            -
             | 
| 111 | 
            -
             | 
| 112 | 
            -
                         | 
| 113 | 
            -
                         | 
| 114 | 
            -
                         | 
| 115 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
| 116 | 
             
                    )
         | 
| 117 | 
             
                    output_unpad = flash_attn_varlen_qkvpacked_func(
         | 
| 118 | 
            -
                         | 
| 119 | 
            -
                         | 
| 120 | 
            -
                         | 
| 121 | 
             
                        0.0,
         | 
| 122 | 
             
                        softmax_scale=None,
         | 
| 123 | 
            -
                        causal= | 
| 124 | 
             
                    )
         | 
| 125 | 
            -
                    output =  | 
| 126 | 
            -
             | 
| 127 | 
            -
             | 
| 128 | 
            -
             | 
| 129 | 
            -
             | 
| 130 | 
            -
             | 
| 131 | 
            -
                         | 
| 132 | 
            -
             | 
| 133 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 134 | 
             
                    )
         | 
| 135 |  | 
| 136 | 
             
                return (
         | 
| 137 | 
            -
                     | 
| 138 | 
            -
                     | 
| 139 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 140 | 
             
                )
         | 
| 141 |  | 
| 142 |  | 
| 143 | 
            -
             | 
| 144 | 
            -
            # requires the attention mask to be the same as the key_padding_mask
         | 
| 145 | 
            -
            def _prepare_decoder_attention_mask(
         | 
| 146 | 
             
                self,
         | 
| 147 | 
            -
                 | 
| 148 | 
            -
                 | 
| 149 | 
            -
                 | 
| 150 | 
            -
                 | 
| 151 | 
            -
             | 
| 152 | 
            -
                 | 
| 153 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 154 |  | 
|  | |
|  | |
|  | |
| 155 |  | 
| 156 | 
            -
             | 
| 157 | 
            -
                 | 
| 158 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 159 | 
             
                )
         | 
| 160 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 2 |  | 
| 3 | 
             
            # copied from https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama_flash_attn_monkey_patch.py
         | 
| 4 |  | 
| 5 | 
            +
            import warnings
         | 
| 6 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 7 |  | 
| 8 | 
             
            import torch
         | 
| 9 | 
            +
            import torch.nn.functional as F
         | 
| 10 | 
             
            import transformers
         | 
| 11 | 
             
            from einops import rearrange
         | 
| 12 | 
             
            from flash_attn.bert_padding import pad_input, unpad_input
         | 
| 13 | 
            +
            from transformers.modeling_outputs import BaseModelOutputWithPast
         | 
| 14 | 
            +
            from transformers.models.llama.modeling_llama import (
         | 
| 15 | 
            +
                LlamaDecoderLayer as OriginalLlamaDecoderLayer,
         | 
| 16 | 
            +
            )
         | 
| 17 | 
            +
            from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from axolotl.monkeypatch.utils import get_cu_seqlens_from_pos_ids
         | 
| 20 |  | 
| 21 | 
             
            try:
         | 
| 22 | 
            +
                from flash_attn.flash_attn_interface import (  # pylint: disable=ungrouped-imports
         | 
| 23 | 
            +
                    flash_attn_kvpacked_func,
         | 
| 24 | 
            +
                    flash_attn_varlen_kvpacked_func,
         | 
| 25 | 
            +
                    flash_attn_varlen_qkvpacked_func,
         | 
| 26 | 
            +
                )
         | 
| 27 | 
             
            except ImportError:
         | 
| 28 | 
            +
                from flash_attn.flash_attn_interface import (
         | 
| 29 | 
            +
                    flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func,
         | 
| 30 | 
            +
                )
         | 
| 31 | 
             
                from flash_attn.flash_attn_interface import (
         | 
| 32 | 
             
                    flash_attn_unpadded_qkvpacked_func as flash_attn_varlen_qkvpacked_func,
         | 
| 33 | 
             
                )
         | 
| 34 |  | 
|  | |
| 35 |  | 
| 36 | 
            +
            def replace_llama_attn_with_flash_attn(packed: Optional[bool] = False):
         | 
| 37 | 
            +
                transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (  # pylint: disable=protected-access
         | 
| 38 | 
            +
                    _prepare_decoder_attention_mask
         | 
| 39 | 
            +
                )
         | 
| 40 | 
            +
                transformers.models.llama.modeling_llama.LlamaAttention.forward = flashattn_forward
         | 
| 41 | 
            +
                if packed:
         | 
| 42 | 
            +
                    transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
         | 
| 43 | 
            +
                    transformers.models.llama.modeling_llama.LlamaModel.forward = (
         | 
| 44 | 
            +
                        llama_model_forward
         | 
| 45 | 
            +
                    )
         | 
| 46 |  | 
| 47 |  | 
| 48 | 
            +
            # Disable the transformation of the attention mask in LlamaModel as the flash attention
         | 
| 49 | 
            +
            # requires the attention mask to be the same as the key_padding_mask
         | 
| 50 | 
            +
            def _prepare_decoder_attention_mask(
         | 
| 51 | 
            +
                self,
         | 
| 52 | 
            +
                attention_mask,
         | 
| 53 | 
            +
                input_shape,
         | 
| 54 | 
            +
                inputs_embeds,
         | 
| 55 | 
            +
                past_key_values_length,
         | 
| 56 | 
            +
            ):  # pylint: disable=unused-argument
         | 
| 57 | 
            +
                # [bsz, seq_len]
         | 
| 58 | 
            +
                return attention_mask
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            def flashattn_forward(
         | 
| 62 | 
             
                self,
         | 
| 63 | 
             
                hidden_states: torch.Tensor,
         | 
| 64 | 
             
                attention_mask: Optional[torch.Tensor] = None,
         | 
|  | |
| 66 | 
             
                past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 67 | 
             
                output_attentions: bool = False,
         | 
| 68 | 
             
                use_cache: bool = False,
         | 
| 69 | 
            +
                cu_seqlens: Optional[torch.Tensor] = None,
         | 
| 70 | 
            +
                max_seqlen: Optional[torch.Tensor] = None,
         | 
| 71 | 
             
            ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 72 | 
             
                """Input shape: Batch x Time x Channel
         | 
| 73 |  | 
|  | |
| 76 | 
             
                # pylint: disable=duplicate-code
         | 
| 77 | 
             
                bsz, q_len, _ = hidden_states.size()
         | 
| 78 |  | 
| 79 | 
            +
                if not hasattr(self, "pretraining_tp"):
         | 
| 80 | 
            +
                    self.pretraining_tp = 1
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                if self.pretraining_tp > 1:
         | 
| 83 | 
            +
                    key_value_slicing = (
         | 
| 84 | 
            +
                        self.num_key_value_heads * self.head_dim
         | 
| 85 | 
            +
                    ) // self.pretraining_tp
         | 
| 86 | 
            +
                    query_slices = self.q_proj.weight.split(
         | 
| 87 | 
            +
                        (self.num_heads * self.head_dim) // self.pretraining_tp, dim=0
         | 
| 88 | 
            +
                    )
         | 
| 89 | 
            +
                    key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
         | 
| 90 | 
            +
                    value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                    query_states = [
         | 
| 93 | 
            +
                        F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)
         | 
| 94 | 
            +
                    ]
         | 
| 95 | 
            +
                    query_states = torch.cat(query_states, dim=-1)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    key_states = [
         | 
| 98 | 
            +
                        F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)
         | 
| 99 | 
            +
                    ]
         | 
| 100 | 
            +
                    key_states = torch.cat(key_states, dim=-1)
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    value_states = [
         | 
| 103 | 
            +
                        F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)
         | 
| 104 | 
            +
                    ]
         | 
| 105 | 
            +
                    value_states = torch.cat(value_states, dim=-1)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                else:
         | 
| 108 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 109 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 110 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                query_states = query_states.view(
         | 
| 113 | 
            +
                    bsz, q_len, self.num_heads, self.head_dim
         | 
| 114 | 
            +
                ).transpose(1, 2)
         | 
| 115 | 
            +
                key_states = key_states.view(
         | 
| 116 | 
            +
                    bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 117 | 
            +
                ).transpose(1, 2)
         | 
| 118 | 
            +
                value_states = value_states.view(
         | 
| 119 | 
            +
                    bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 120 | 
            +
                ).transpose(1, 2)
         | 
| 121 | 
             
                # [bsz, q_len, nh, hd]
         | 
| 122 | 
             
                # [bsz, nh, q_len, hd]
         | 
| 123 |  | 
| 124 | 
             
                kv_seq_len = key_states.shape[-2]
         | 
| 125 | 
            +
                if past_key_value is not None:
         | 
| 126 | 
            +
                    kv_seq_len += past_key_value[0].shape[-2]
         | 
| 127 |  | 
| 128 | 
             
                cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 129 | 
             
                query_states, key_states = apply_rotary_pos_emb(
         | 
| 130 | 
             
                    query_states, key_states, cos, sin, position_ids
         | 
| 131 | 
             
                )
         | 
| 132 | 
             
                # [bsz, nh, t, hd]
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                if past_key_value is not None:
         | 
| 135 | 
            +
                    # reuse k, v, self_attention
         | 
| 136 | 
            +
                    key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 137 | 
            +
                    value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                past_key_value = (key_states, value_states) if use_cache else None
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                # repeat k/v heads if n_kv_heads < n_heads
         | 
| 142 | 
            +
                key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 143 | 
            +
                value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                if output_attentions:
         | 
| 146 | 
            +
                    warnings.warn(
         | 
| 147 | 
            +
                        "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 148 | 
             
                    )
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                #
         | 
| 151 | 
            +
                # flash-attn v2 start
         | 
| 152 | 
            +
                #
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                if self.training:
         | 
| 155 | 
            +
                    # during training q,k,v always have same seqlen
         | 
| 156 | 
            +
                    assert key_states.shape == query_states.shape
         | 
| 157 | 
            +
                    is_causal = True
         | 
| 158 | 
            +
                else:
         | 
| 159 | 
            +
                    # turn off FA causal mask after first inference autoregressive iteration
         | 
| 160 | 
            +
                    # only on first autoregressive step q,k,v have same seqlen
         | 
| 161 | 
            +
                    is_causal = past_key_value is not None
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                if cu_seqlens is not None and max_seqlen is not None:
         | 
| 164 | 
             
                    # special handling using sample packing
         | 
| 165 | 
            +
                    qkv = torch.stack(
         | 
| 166 | 
            +
                        [query_states, key_states, value_states], dim=2
         | 
| 167 | 
            +
                    )  # [bsz, nh, 3, q_len, hd]
         | 
| 168 | 
            +
                    qkv = qkv.transpose(1, 3)  # [bsz, q_len, 3, nh, hd]
         | 
| 169 | 
             
                    qkv = rearrange(qkv, "b s ... -> (b s) ...")
         | 
|  | |
|  | |
| 170 |  | 
| 171 | 
             
                    output = flash_attn_varlen_qkvpacked_func(
         | 
| 172 | 
            +
                        qkv, cu_seqlens, max_seqlen, 0.0, softmax_scale=None, causal=is_causal
         | 
| 173 | 
             
                    )
         | 
| 174 | 
             
                    output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
         | 
| 175 | 
            +
                elif query_states.shape == key_states.shape:
         | 
| 176 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 177 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 178 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 179 | 
            +
                    qkv_unpad, cu_seqlens_q, max_seqlen_q, _, output_pad_fn = generate_qkv(
         | 
| 180 | 
            +
                        query_states,
         | 
| 181 | 
            +
                        key_states,
         | 
| 182 | 
            +
                        value_states,
         | 
| 183 | 
            +
                        qkvpacked=True,
         | 
| 184 | 
            +
                        # We have disabled _prepare_decoder_attention_mask in LlamaModel
         | 
| 185 | 
            +
                        # the attention_mask should be the same as the key_padding_mask
         | 
| 186 | 
            +
                        key_padding_mask=attention_mask,
         | 
| 187 | 
            +
                        query_padding_mask=attention_mask[:, -query_states.size(1) :]
         | 
| 188 | 
            +
                        if attention_mask is not None
         | 
| 189 | 
            +
                        else None,
         | 
| 190 | 
             
                    )
         | 
| 191 | 
             
                    output_unpad = flash_attn_varlen_qkvpacked_func(
         | 
| 192 | 
            +
                        qkv_unpad,
         | 
| 193 | 
            +
                        cu_seqlens_q,
         | 
| 194 | 
            +
                        max_seqlen_q,
         | 
| 195 | 
             
                        0.0,
         | 
| 196 | 
             
                        softmax_scale=None,
         | 
| 197 | 
            +
                        causal=is_causal,
         | 
| 198 | 
             
                    )
         | 
| 199 | 
            +
                    output = output_pad_fn(output_unpad)
         | 
| 200 | 
            +
                else:
         | 
| 201 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 202 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 203 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 204 | 
            +
                    if attention_mask is None or attention_mask.all().item():
         | 
| 205 | 
            +
                        output = flash_attn_kvpacked_func(
         | 
| 206 | 
            +
                            query_states,
         | 
| 207 | 
            +
                            torch.stack([key_states, value_states], 2),
         | 
| 208 | 
            +
                            causal=is_causal,
         | 
| 209 | 
            +
                        )
         | 
| 210 | 
            +
                    else:
         | 
| 211 | 
            +
                        (  # pylint: disable=unbalanced-tuple-unpacking
         | 
| 212 | 
            +
                            q_unpad,
         | 
| 213 | 
            +
                            kv_unpad,
         | 
| 214 | 
            +
                            cu_seqlens_q,
         | 
| 215 | 
            +
                            cu_seqlens_k,
         | 
| 216 | 
            +
                            max_seqlen_q,
         | 
| 217 | 
            +
                            max_seqlen_k,
         | 
| 218 | 
            +
                            _,
         | 
| 219 | 
            +
                            _,
         | 
| 220 | 
            +
                            output_pad_fn,
         | 
| 221 | 
            +
                        ) = generate_qkv(
         | 
| 222 | 
            +
                            query_states,
         | 
| 223 | 
            +
                            key_states,
         | 
| 224 | 
            +
                            value_states,
         | 
| 225 | 
            +
                            kvpacked=True,
         | 
| 226 | 
            +
                            key_padding_mask=attention_mask,
         | 
| 227 | 
            +
                            query_padding_mask=attention_mask[:, -query_states.size(1) :]
         | 
| 228 | 
            +
                            if attention_mask is not None
         | 
| 229 | 
            +
                            else None,
         | 
| 230 | 
            +
                        )
         | 
| 231 | 
            +
                        output_unpad = flash_attn_varlen_kvpacked_func(
         | 
| 232 | 
            +
                            q_unpad,
         | 
| 233 | 
            +
                            kv_unpad,
         | 
| 234 | 
            +
                            cu_seqlens_q,
         | 
| 235 | 
            +
                            cu_seqlens_k,
         | 
| 236 | 
            +
                            max_seqlen_q,
         | 
| 237 | 
            +
                            max_seqlen_k,
         | 
| 238 | 
            +
                            0.0,
         | 
| 239 | 
            +
                            softmax_scale=None,
         | 
| 240 | 
            +
                            causal=is_causal,
         | 
| 241 | 
            +
                        )
         | 
| 242 | 
            +
                        output = output_pad_fn(output_unpad)
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                attn_output = output
         | 
| 245 | 
            +
                if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim):
         | 
| 246 | 
            +
                    raise ValueError(
         | 
| 247 | 
            +
                        f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
         | 
| 248 | 
            +
                        f" {attn_output.size()}"
         | 
| 249 | 
            +
                    )
         | 
| 250 | 
            +
                attn_output = rearrange(attn_output, "b s h d -> b s (h d)")
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                #
         | 
| 253 | 
            +
                # flash-attn v2 end
         | 
| 254 | 
            +
                #
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                if self.pretraining_tp > 1:
         | 
| 257 | 
            +
                    attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
         | 
| 258 | 
            +
                    o_proj_slices = self.o_proj.weight.split(
         | 
| 259 | 
            +
                        self.hidden_size // self.pretraining_tp, dim=1
         | 
| 260 | 
            +
                    )
         | 
| 261 | 
            +
                    attn_output = sum(
         | 
| 262 | 
            +
                        F.linear(attn_output[i], o_proj_slices[i])
         | 
| 263 | 
            +
                        for i in range(self.pretraining_tp)
         | 
| 264 | 
            +
                    )
         | 
| 265 | 
            +
                else:
         | 
| 266 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                return attn_output, None, past_key_value
         | 
| 269 | 
            +
             | 
| 270 | 
            +
             | 
| 271 | 
            +
            # based on https://github.com/Dao-AILab/flash-attention/blob/364a5b/tests/test_flash_attn.py#L38
         | 
| 272 | 
            +
            def generate_qkv(
         | 
| 273 | 
            +
                q,
         | 
| 274 | 
            +
                k,
         | 
| 275 | 
            +
                v,
         | 
| 276 | 
            +
                query_padding_mask=None,
         | 
| 277 | 
            +
                key_padding_mask=None,
         | 
| 278 | 
            +
                kvpacked=False,
         | 
| 279 | 
            +
                qkvpacked=False,
         | 
| 280 | 
            +
            ):  # pylint: disable=invalid-name,unnecessary-lambda-assignment
         | 
| 281 | 
            +
                """
         | 
| 282 | 
            +
                Arguments:
         | 
| 283 | 
            +
                    q: (batch_size, seqlen_q, nheads, d)
         | 
| 284 | 
            +
                    k: (batch_size, seqlen_k, nheads_k, d)
         | 
| 285 | 
            +
                    v: (batch_size, seqlen_k, nheads_k, d)
         | 
| 286 | 
            +
                    query_padding_mask: (batch_size, seqlen), bool
         | 
| 287 | 
            +
                    key_padding_mask: (batch_size, seqlen), bool
         | 
| 288 | 
            +
                """
         | 
| 289 | 
            +
                assert not (kvpacked and qkvpacked)
         | 
| 290 | 
            +
                batch_size, seqlen_q, nheads, d = q.shape
         | 
| 291 | 
            +
                _, seqlen_k, nheads_k, _ = k.shape
         | 
| 292 | 
            +
                assert k.shape == (batch_size, seqlen_k, nheads_k, d)
         | 
| 293 | 
            +
                assert v.shape == (batch_size, seqlen_k, nheads_k, d)
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                if query_padding_mask is not None:
         | 
| 296 | 
            +
                    q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(
         | 
| 297 | 
            +
                        q, query_padding_mask
         | 
| 298 | 
            +
                    )
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    output_pad_fn = lambda output_unpad: pad_input(  # noqa: E731
         | 
| 301 | 
            +
                        output_unpad, indices_q, batch_size, seqlen_q
         | 
| 302 | 
            +
                    )
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                else:
         | 
| 305 | 
            +
                    q_unpad = rearrange(q, "b s h d -> (b s) h d")
         | 
| 306 | 
            +
                    cu_seqlens_q = torch.arange(
         | 
| 307 | 
            +
                        0,
         | 
| 308 | 
            +
                        (batch_size + 1) * seqlen_q,
         | 
| 309 | 
            +
                        step=seqlen_q,
         | 
| 310 | 
            +
                        dtype=torch.int32,
         | 
| 311 | 
            +
                        device=q_unpad.device,
         | 
| 312 | 
            +
                    )
         | 
| 313 | 
            +
                    max_seqlen_q = seqlen_q
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    output_pad_fn = lambda output_unpad: rearrange(  # noqa: E731
         | 
| 316 | 
            +
                        output_unpad, "(b s) h d -> b s h d", b=batch_size
         | 
| 317 | 
            +
                    )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                if key_padding_mask is not None:
         | 
| 320 | 
            +
                    k_unpad, _, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
         | 
| 321 | 
            +
                    v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
         | 
| 322 | 
            +
                else:
         | 
| 323 | 
            +
                    k_unpad = rearrange(k, "b s h d -> (b s) h d")
         | 
| 324 | 
            +
                    v_unpad = rearrange(v, "b s h d -> (b s) h d")
         | 
| 325 | 
            +
                    cu_seqlens_k = torch.arange(
         | 
| 326 | 
            +
                        0,
         | 
| 327 | 
            +
                        (batch_size + 1) * seqlen_k,
         | 
| 328 | 
            +
                        step=seqlen_k,
         | 
| 329 | 
            +
                        dtype=torch.int32,
         | 
| 330 | 
            +
                        device=k_unpad.device,
         | 
| 331 | 
            +
                    )
         | 
| 332 | 
            +
                    max_seqlen_k = seqlen_k
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                if qkvpacked:
         | 
| 335 | 
            +
                    assert nheads == nheads_k
         | 
| 336 | 
            +
                    qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
         | 
| 337 | 
            +
                    qkv = torch.stack([q, k, v], dim=2)
         | 
| 338 | 
            +
                    return (qkv_unpad, cu_seqlens_q, max_seqlen_q, qkv, output_pad_fn)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                if kvpacked:
         | 
| 341 | 
            +
                    kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
         | 
| 342 | 
            +
                    kv = torch.stack([k, v], dim=2)
         | 
| 343 | 
            +
                    return (
         | 
| 344 | 
            +
                        q_unpad,
         | 
| 345 | 
            +
                        kv_unpad,
         | 
| 346 | 
            +
                        cu_seqlens_q,
         | 
| 347 | 
            +
                        cu_seqlens_k,
         | 
| 348 | 
            +
                        max_seqlen_q,
         | 
| 349 | 
            +
                        max_seqlen_k,
         | 
| 350 | 
            +
                        q,
         | 
| 351 | 
            +
                        kv,
         | 
| 352 | 
            +
                        output_pad_fn,
         | 
| 353 | 
             
                    )
         | 
| 354 |  | 
| 355 | 
             
                return (
         | 
| 356 | 
            +
                    q_unpad,
         | 
| 357 | 
            +
                    k_unpad,
         | 
| 358 | 
            +
                    v_unpad,
         | 
| 359 | 
            +
                    cu_seqlens_q,
         | 
| 360 | 
            +
                    cu_seqlens_k,
         | 
| 361 | 
            +
                    max_seqlen_q,
         | 
| 362 | 
            +
                    max_seqlen_k,
         | 
| 363 | 
            +
                    q,
         | 
| 364 | 
            +
                    k,
         | 
| 365 | 
            +
                    v,
         | 
| 366 | 
            +
                    output_pad_fn,
         | 
| 367 | 
             
                )
         | 
| 368 |  | 
| 369 |  | 
| 370 | 
            +
            def llama_model_forward(
         | 
|  | |
|  | |
| 371 | 
             
                self,
         | 
| 372 | 
            +
                input_ids: torch.LongTensor = None,
         | 
| 373 | 
            +
                attention_mask: Optional[torch.Tensor] = None,
         | 
| 374 | 
            +
                position_ids: Optional[torch.LongTensor] = None,
         | 
| 375 | 
            +
                past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 376 | 
            +
                inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 377 | 
            +
                use_cache: Optional[bool] = None,
         | 
| 378 | 
            +
                output_attentions: Optional[bool] = None,
         | 
| 379 | 
            +
                output_hidden_states: Optional[bool] = None,
         | 
| 380 | 
            +
                return_dict: Optional[bool] = None,
         | 
| 381 | 
            +
            ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 382 | 
            +
                output_attentions = (
         | 
| 383 | 
            +
                    output_attentions
         | 
| 384 | 
            +
                    if output_attentions is not None
         | 
| 385 | 
            +
                    else self.config.output_attentions
         | 
| 386 | 
            +
                )
         | 
| 387 | 
            +
                output_hidden_states = (
         | 
| 388 | 
            +
                    output_hidden_states
         | 
| 389 | 
            +
                    if output_hidden_states is not None
         | 
| 390 | 
            +
                    else self.config.output_hidden_states
         | 
| 391 | 
            +
                )
         | 
| 392 | 
            +
                use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 393 |  | 
| 394 | 
            +
                return_dict = (
         | 
| 395 | 
            +
                    return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 396 | 
            +
                )
         | 
| 397 |  | 
| 398 | 
            +
                # retrieve input_ids and inputs_embeds
         | 
| 399 | 
            +
                if input_ids is not None and inputs_embeds is not None:
         | 
| 400 | 
            +
                    raise ValueError(
         | 
| 401 | 
            +
                        "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
         | 
| 402 | 
            +
                    )
         | 
| 403 | 
            +
                if input_ids is not None:
         | 
| 404 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 405 | 
            +
                elif inputs_embeds is not None:
         | 
| 406 | 
            +
                    batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 407 | 
            +
                else:
         | 
| 408 | 
            +
                    raise ValueError(
         | 
| 409 | 
            +
                        "You have to specify either decoder_input_ids or decoder_inputs_embeds"
         | 
| 410 | 
            +
                    )
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                seq_length_with_past = seq_length
         | 
| 413 | 
            +
                past_key_values_length = 0
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                if past_key_values is not None:
         | 
| 416 | 
            +
                    past_key_values_length = past_key_values[0][0].shape[2]
         | 
| 417 | 
            +
                    seq_length_with_past = seq_length_with_past + past_key_values_length
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                cu_seqlens = None
         | 
| 420 | 
            +
                max_seqlen = None
         | 
| 421 | 
            +
                if position_ids is None:
         | 
| 422 | 
            +
                    device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 423 | 
            +
                    position_ids = torch.arange(
         | 
| 424 | 
            +
                        past_key_values_length,
         | 
| 425 | 
            +
                        seq_length + past_key_values_length,
         | 
| 426 | 
            +
                        dtype=torch.long,
         | 
| 427 | 
            +
                        device=device,
         | 
| 428 | 
            +
                    )
         | 
| 429 | 
            +
                    position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
         | 
| 430 | 
            +
                else:
         | 
| 431 | 
            +
                    position_ids = position_ids.view(-1, seq_length).long()
         | 
| 432 | 
            +
                    cu_seqlens, max_seqlen = get_cu_seqlens_from_pos_ids(position_ids)
         | 
| 433 | 
            +
                    cu_seqlens = cu_seqlens.squeeze()
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                if inputs_embeds is None:
         | 
| 436 | 
            +
                    inputs_embeds = self.embed_tokens(input_ids)
         | 
| 437 | 
            +
                # embed positions
         | 
| 438 | 
            +
                if attention_mask is None:
         | 
| 439 | 
            +
                    attention_mask = torch.ones(
         | 
| 440 | 
            +
                        (batch_size, seq_length_with_past),
         | 
| 441 | 
            +
                        dtype=torch.bool,
         | 
| 442 | 
            +
                        device=inputs_embeds.device,
         | 
| 443 | 
            +
                    )
         | 
| 444 | 
            +
                attention_mask = (
         | 
| 445 | 
            +
                    self._prepare_decoder_attention_mask(  # pylint: disable=protected-access
         | 
| 446 | 
            +
                        attention_mask,
         | 
| 447 | 
            +
                        (batch_size, seq_length),
         | 
| 448 | 
            +
                        inputs_embeds,
         | 
| 449 | 
            +
                        past_key_values_length,
         | 
| 450 | 
            +
                    )
         | 
| 451 | 
            +
                )
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                hidden_states = inputs_embeds
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                if self.gradient_checkpointing and self.training:
         | 
| 456 | 
            +
                    if use_cache:
         | 
| 457 | 
            +
                        transformers.logger.warning_once(
         | 
| 458 | 
            +
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 459 | 
            +
                        )
         | 
| 460 | 
            +
                        use_cache = False
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                # decoder layers
         | 
| 463 | 
            +
                all_hidden_states = () if output_hidden_states else None
         | 
| 464 | 
            +
                all_self_attns = () if output_attentions else None
         | 
| 465 | 
            +
                next_decoder_cache = () if use_cache else None
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                for idx, decoder_layer in enumerate(self.layers):
         | 
| 468 | 
            +
                    if output_hidden_states:
         | 
| 469 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    past_key_value = past_key_values[idx] if past_key_values is not None else None
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                        def create_custom_forward(module):
         | 
| 476 | 
            +
                            def custom_forward(*inputs):
         | 
| 477 | 
            +
                                # None for past_key_value
         | 
| 478 | 
            +
                                return module(*inputs)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                            return custom_forward
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                        layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 483 | 
            +
                            create_custom_forward(decoder_layer),
         | 
| 484 | 
            +
                            hidden_states,
         | 
| 485 | 
            +
                            attention_mask,
         | 
| 486 | 
            +
                            position_ids,
         | 
| 487 | 
            +
                            None,
         | 
| 488 | 
            +
                            output_attentions,
         | 
| 489 | 
            +
                            None,
         | 
| 490 | 
            +
                            cu_seqlens,
         | 
| 491 | 
            +
                            max_seqlen,
         | 
| 492 | 
            +
                        )
         | 
| 493 | 
            +
                    else:
         | 
| 494 | 
            +
                        layer_outputs = decoder_layer(
         | 
| 495 | 
            +
                            hidden_states,
         | 
| 496 | 
            +
                            attention_mask=attention_mask,
         | 
| 497 | 
            +
                            position_ids=position_ids,
         | 
| 498 | 
            +
                            past_key_value=past_key_value,
         | 
| 499 | 
            +
                            output_attentions=output_attentions,
         | 
| 500 | 
            +
                            use_cache=use_cache,
         | 
| 501 | 
            +
                            cu_seqlens=cu_seqlens,
         | 
| 502 | 
            +
                            max_seqlen=max_seqlen,
         | 
| 503 | 
            +
                        )
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                    hidden_states = layer_outputs[0]
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                    if use_cache:
         | 
| 508 | 
            +
                        next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                    if output_attentions:
         | 
| 511 | 
            +
                        all_self_attns += (layer_outputs[1],)
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                hidden_states = self.norm(hidden_states)
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                # add hidden states from the last decoder layer
         | 
| 516 | 
            +
                if output_hidden_states:
         | 
| 517 | 
            +
                    all_hidden_states += (hidden_states,)
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                next_cache = next_decoder_cache if use_cache else None
         | 
| 520 | 
            +
                if not return_dict:
         | 
| 521 | 
            +
                    return tuple(
         | 
| 522 | 
            +
                        v
         | 
| 523 | 
            +
                        for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
         | 
| 524 | 
            +
                        if v is not None
         | 
| 525 | 
            +
                    )
         | 
| 526 | 
            +
                return BaseModelOutputWithPast(
         | 
| 527 | 
            +
                    last_hidden_state=hidden_states,
         | 
| 528 | 
            +
                    past_key_values=next_cache,
         | 
| 529 | 
            +
                    hidden_states=all_hidden_states,
         | 
| 530 | 
            +
                    attentions=all_self_attns,
         | 
| 531 | 
             
                )
         | 
| 532 | 
            +
             | 
| 533 | 
            +
             | 
| 534 | 
            +
            class LlamaDecoderLayer(OriginalLlamaDecoderLayer):
         | 
| 535 | 
            +
                """
         | 
| 536 | 
            +
                patched version of LlamaDecoderLayer to pass through the precalculated cu_seqlens
         | 
| 537 | 
            +
                """
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                def forward(
         | 
| 540 | 
            +
                    self,
         | 
| 541 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 542 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 543 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 544 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 545 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 546 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 547 | 
            +
                    cu_seqlens: Optional[torch.Tensor] = None,
         | 
| 548 | 
            +
                    max_seqlen: Optional[torch.Tensor] = None,
         | 
| 549 | 
            +
                ) -> Tuple[
         | 
| 550 | 
            +
                    torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
         | 
| 551 | 
            +
                ]:
         | 
| 552 | 
            +
                    """
         | 
| 553 | 
            +
                    Args:
         | 
| 554 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 555 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
         | 
| 556 | 
            +
                            `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
         | 
| 557 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 558 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 559 | 
            +
                            returned tensors for more detail.
         | 
| 560 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 561 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 562 | 
            +
                            (see `past_key_values`).
         | 
| 563 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 564 | 
            +
                        cu_seqlens (`torch.Tensor`, *optional*) cumulative sequence len when packing
         | 
| 565 | 
            +
                    """
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                    residual = hidden_states
         | 
| 568 | 
            +
             | 
| 569 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    # Self Attention
         | 
| 572 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 573 | 
            +
                        hidden_states=hidden_states,
         | 
| 574 | 
            +
                        attention_mask=attention_mask,
         | 
| 575 | 
            +
                        position_ids=position_ids,
         | 
| 576 | 
            +
                        past_key_value=past_key_value,
         | 
| 577 | 
            +
                        output_attentions=output_attentions,
         | 
| 578 | 
            +
                        use_cache=use_cache,
         | 
| 579 | 
            +
                        cu_seqlens=cu_seqlens,
         | 
| 580 | 
            +
                        max_seqlen=max_seqlen,
         | 
| 581 | 
            +
                    )
         | 
| 582 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                    # Fully Connected
         | 
| 585 | 
            +
                    residual = hidden_states
         | 
| 586 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 587 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 588 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                    outputs = (hidden_states,)
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                    if output_attentions:
         | 
| 593 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 594 | 
            +
             | 
| 595 | 
            +
                    if use_cache:
         | 
| 596 | 
            +
                        outputs += (present_key_value,)
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                    return outputs
         | 
    	
        src/axolotl/monkeypatch/llama_attn_hijack_sdp.py
    ADDED
    
    | @@ -0,0 +1,140 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Patched LlamaAttention to use torch.nn.functional.scaled_dot_product_attention
         | 
| 3 | 
            +
            """
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import warnings
         | 
| 6 | 
            +
            from typing import Optional, Tuple
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import torch
         | 
| 9 | 
            +
            import torch.nn.functional as F
         | 
| 10 | 
            +
            import transformers.models.llama.modeling_llama
         | 
| 11 | 
            +
            from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            def hijack_llama_sdp_attention():
         | 
| 15 | 
            +
                transformers.models.llama.modeling_llama.LlamaAttention.forward = (
         | 
| 16 | 
            +
                    sdp_attention_forward
         | 
| 17 | 
            +
                )
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            def sdp_attention_forward(
         | 
| 21 | 
            +
                self,
         | 
| 22 | 
            +
                hidden_states: torch.Tensor,
         | 
| 23 | 
            +
                attention_mask: Optional[torch.Tensor] = None,
         | 
| 24 | 
            +
                position_ids: Optional[torch.LongTensor] = None,
         | 
| 25 | 
            +
                past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 26 | 
            +
                output_attentions: bool = False,
         | 
| 27 | 
            +
                use_cache: bool = False,
         | 
| 28 | 
            +
            ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 29 | 
            +
                # pylint: disable=duplicate-code
         | 
| 30 | 
            +
                bsz, q_len, _ = hidden_states.size()
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                if not hasattr(self, "pretraining_tp"):
         | 
| 33 | 
            +
                    self.pretraining_tp = 1
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                if self.pretraining_tp > 1:
         | 
| 36 | 
            +
                    key_value_slicing = (
         | 
| 37 | 
            +
                        self.num_key_value_heads * self.head_dim
         | 
| 38 | 
            +
                    ) // self.pretraining_tp
         | 
| 39 | 
            +
                    query_slices = self.q_proj.weight.split(
         | 
| 40 | 
            +
                        (self.num_heads * self.head_dim) // self.pretraining_tp, dim=0
         | 
| 41 | 
            +
                    )
         | 
| 42 | 
            +
                    key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
         | 
| 43 | 
            +
                    value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    query_states = [
         | 
| 46 | 
            +
                        F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)
         | 
| 47 | 
            +
                    ]
         | 
| 48 | 
            +
                    query_states = torch.cat(query_states, dim=-1)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                    key_states = [
         | 
| 51 | 
            +
                        F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)
         | 
| 52 | 
            +
                    ]
         | 
| 53 | 
            +
                    key_states = torch.cat(key_states, dim=-1)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    value_states = [
         | 
| 56 | 
            +
                        F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)
         | 
| 57 | 
            +
                    ]
         | 
| 58 | 
            +
                    value_states = torch.cat(value_states, dim=-1)
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                else:
         | 
| 61 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 62 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 63 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                query_states = query_states.view(
         | 
| 66 | 
            +
                    bsz, q_len, self.num_heads, self.head_dim
         | 
| 67 | 
            +
                ).transpose(1, 2)
         | 
| 68 | 
            +
                key_states = key_states.view(
         | 
| 69 | 
            +
                    bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 70 | 
            +
                ).transpose(1, 2)
         | 
| 71 | 
            +
                value_states = value_states.view(
         | 
| 72 | 
            +
                    bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 73 | 
            +
                ).transpose(1, 2)
         | 
| 74 | 
            +
                # [bsz, q_len, nh, hd]
         | 
| 75 | 
            +
                # [bsz, nh, q_len, hd]
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                kv_seq_len = key_states.shape[-2]
         | 
| 78 | 
            +
                if past_key_value is not None:
         | 
| 79 | 
            +
                    kv_seq_len += past_key_value[0].shape[-2]
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 82 | 
            +
                query_states, key_states = apply_rotary_pos_emb(
         | 
| 83 | 
            +
                    query_states, key_states, cos, sin, position_ids
         | 
| 84 | 
            +
                )
         | 
| 85 | 
            +
                # [bsz, nh, t, hd]
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                if past_key_value is not None:
         | 
| 88 | 
            +
                    # reuse k, v, self_attention
         | 
| 89 | 
            +
                    key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 90 | 
            +
                    value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                past_key_value = (key_states, value_states) if use_cache else None
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                # repeat k/v heads if n_kv_heads < n_heads
         | 
| 95 | 
            +
                key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 96 | 
            +
                value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                if output_attentions:
         | 
| 99 | 
            +
                    warnings.warn(
         | 
| 100 | 
            +
                        "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
         | 
| 101 | 
            +
                    )
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                #
         | 
| 104 | 
            +
                # sdp-attn start
         | 
| 105 | 
            +
                #
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                with torch.backends.cuda.sdp_kernel():
         | 
| 108 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 109 | 
            +
                        query_states,
         | 
| 110 | 
            +
                        key_states,
         | 
| 111 | 
            +
                        value_states,
         | 
| 112 | 
            +
                        attn_mask=attention_mask,
         | 
| 113 | 
            +
                        is_causal=False,
         | 
| 114 | 
            +
                    )
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 117 | 
            +
                    raise ValueError(
         | 
| 118 | 
            +
                        f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 119 | 
            +
                        f" {attn_output.size()}"
         | 
| 120 | 
            +
                    )
         | 
| 121 | 
            +
                attn_output = attn_output.transpose(1, 2)
         | 
| 122 | 
            +
                attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                #
         | 
| 125 | 
            +
                # sdp-attn end
         | 
| 126 | 
            +
                #
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                if self.pretraining_tp > 1:
         | 
| 129 | 
            +
                    attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
         | 
| 130 | 
            +
                    o_proj_slices = self.o_proj.weight.split(
         | 
| 131 | 
            +
                        self.hidden_size // self.pretraining_tp, dim=1
         | 
| 132 | 
            +
                    )
         | 
| 133 | 
            +
                    attn_output = sum(
         | 
| 134 | 
            +
                        F.linear(attn_output[i], o_proj_slices[i])
         | 
| 135 | 
            +
                        for i in range(self.pretraining_tp)
         | 
| 136 | 
            +
                    )
         | 
| 137 | 
            +
                else:
         | 
| 138 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                return attn_output, None, past_key_value
         | 
    	
        src/axolotl/monkeypatch/llama_attn_hijack_xformers.py
    CHANGED
    
    | @@ -3,13 +3,13 @@ Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-g | |
| 3 | 
             
            """
         | 
| 4 |  | 
| 5 | 
             
            import logging
         | 
| 6 | 
            -
            import  | 
| 7 | 
             
            from typing import Optional, Tuple
         | 
| 8 |  | 
| 9 | 
             
            import torch
         | 
| 10 | 
             
            import torch.nn.functional as F
         | 
| 11 | 
             
            import transformers.models.llama.modeling_llama
         | 
| 12 | 
            -
            from  | 
| 13 |  | 
| 14 | 
             
            try:
         | 
| 15 | 
             
                import xformers.ops
         | 
| @@ -21,12 +21,6 @@ def hijack_llama_attention(): | |
| 21 | 
             
                transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
         | 
| 22 |  | 
| 23 |  | 
| 24 | 
            -
            def hijack_llama_sdp_attention():
         | 
| 25 | 
            -
                transformers.models.llama.modeling_llama.LlamaAttention.forward = (
         | 
| 26 | 
            -
                    sdp_attention_forward
         | 
| 27 | 
            -
                )
         | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
             
            def xformers_forward(
         | 
| 31 | 
             
                self,
         | 
| 32 | 
             
                hidden_states: torch.Tensor,
         | 
| @@ -81,15 +75,15 @@ def xformers_forward( | |
| 81 | 
             
                value_states = value_states.view(
         | 
| 82 | 
             
                    bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 83 | 
             
                ).transpose(1, 2)
         | 
|  | |
|  | |
| 84 |  | 
| 85 | 
             
                kv_seq_len = key_states.shape[-2]
         | 
| 86 | 
             
                if past_key_value is not None:
         | 
| 87 | 
             
                    kv_seq_len += past_key_value[0].shape[-2]
         | 
|  | |
| 88 | 
             
                cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 89 | 
            -
                (
         | 
| 90 | 
            -
                    query_states,
         | 
| 91 | 
            -
                    key_states,
         | 
| 92 | 
            -
                ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(
         | 
| 93 | 
             
                    query_states, key_states, cos, sin, position_ids
         | 
| 94 | 
             
                )
         | 
| 95 | 
             
                # [bsz, nh, t, hd]
         | 
| @@ -102,74 +96,50 @@ def xformers_forward( | |
| 102 | 
             
                past_key_value = (key_states, value_states) if use_cache else None
         | 
| 103 |  | 
| 104 | 
             
                # repeat k/v heads if n_kv_heads < n_heads
         | 
| 105 | 
            -
                key_states =  | 
| 106 | 
            -
             | 
| 107 | 
            -
                )
         | 
| 108 | 
            -
                value_states = transformers.models.llama.modeling_llama.repeat_kv(
         | 
| 109 | 
            -
                    value_states, self.num_key_value_groups
         | 
| 110 | 
            -
                )
         | 
| 111 |  | 
| 112 | 
            -
                 | 
| 113 | 
            -
             | 
| 114 | 
            -
             | 
| 115 | 
            -
                     | 
| 116 | 
            -
                    value_states = value_states.transpose(1, 2)
         | 
| 117 | 
            -
             | 
| 118 | 
            -
                    # This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
         | 
| 119 | 
            -
                    # We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
         | 
| 120 | 
            -
                    if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
         | 
| 121 | 
            -
                        # input and output should be of form (bsz, q_len, num_heads, head_dim)
         | 
| 122 | 
            -
                        attn_output = xformers.ops.memory_efficient_attention(
         | 
| 123 | 
            -
                            query_states, key_states, value_states, attn_bias=None
         | 
| 124 | 
            -
                        )
         | 
| 125 | 
            -
                    else:
         | 
| 126 | 
            -
                        # input and output should be of form (bsz, q_len, num_heads, head_dim)
         | 
| 127 | 
            -
                        attn_output = xformers.ops.memory_efficient_attention(
         | 
| 128 | 
            -
                            query_states,
         | 
| 129 | 
            -
                            key_states,
         | 
| 130 | 
            -
                            value_states,
         | 
| 131 | 
            -
                            # attn_bias=attention_mask,
         | 
| 132 | 
            -
                            attn_bias=xformers.ops.LowerTriangularMask(),
         | 
| 133 | 
            -
                        )
         | 
| 134 | 
            -
                    attn_weights = None
         | 
| 135 | 
            -
                else:
         | 
| 136 | 
            -
                    attn_weights = torch.matmul(
         | 
| 137 | 
            -
                        query_states, key_states.transpose(2, 3)
         | 
| 138 | 
            -
                    ) / math.sqrt(self.head_dim)
         | 
| 139 | 
            -
             | 
| 140 | 
            -
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 141 | 
            -
                        raise ValueError(
         | 
| 142 | 
            -
                            f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 143 | 
            -
                            f" {attn_weights.size()}"
         | 
| 144 | 
            -
                        )
         | 
| 145 | 
            -
             | 
| 146 | 
            -
                    if attention_mask is not None:
         | 
| 147 | 
            -
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 148 | 
            -
                            raise ValueError(
         | 
| 149 | 
            -
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 150 | 
            -
                            )
         | 
| 151 | 
            -
                        attn_weights = attn_weights + attention_mask
         | 
| 152 | 
            -
                        attn_weights = torch.max(
         | 
| 153 | 
            -
                            attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
         | 
| 154 | 
            -
                        )
         | 
| 155 |  | 
| 156 | 
            -
             | 
| 157 | 
            -
             | 
| 158 | 
            -
             | 
| 159 | 
            -
                    ).to(query_states.dtype)
         | 
| 160 | 
            -
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 161 |  | 
| 162 | 
            -
             | 
| 163 | 
            -
             | 
| 164 | 
            -
             | 
| 165 | 
            -
                            f" {attn_output.size()}"
         | 
| 166 | 
            -
                        )
         | 
| 167 |  | 
| 168 | 
            -
             | 
| 169 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 170 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 171 | 
             
                attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 172 |  | 
|  | |
|  | |
|  | |
|  | |
| 173 | 
             
                if self.pretraining_tp > 1:
         | 
| 174 | 
             
                    attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
         | 
| 175 | 
             
                    o_proj_slices = self.o_proj.weight.split(
         | 
| @@ -182,103 +152,4 @@ def xformers_forward( | |
| 182 | 
             
                else:
         | 
| 183 | 
             
                    attn_output = self.o_proj(attn_output)
         | 
| 184 |  | 
| 185 | 
            -
                return attn_output,  | 
| 186 | 
            -
             | 
| 187 | 
            -
             | 
| 188 | 
            -
            def sdp_attention_forward(
         | 
| 189 | 
            -
                self,
         | 
| 190 | 
            -
                hidden_states: torch.Tensor,
         | 
| 191 | 
            -
                attention_mask: Optional[torch.Tensor] = None,
         | 
| 192 | 
            -
                position_ids: Optional[torch.LongTensor] = None,
         | 
| 193 | 
            -
                past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 194 | 
            -
                output_attentions: bool = False,
         | 
| 195 | 
            -
                use_cache: bool = False,
         | 
| 196 | 
            -
            ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 197 | 
            -
                # pylint: disable=duplicate-code
         | 
| 198 | 
            -
                bsz, q_len, _ = hidden_states.size()
         | 
| 199 | 
            -
             | 
| 200 | 
            -
                query_states = (
         | 
| 201 | 
            -
                    self.q_proj(hidden_states)
         | 
| 202 | 
            -
                    .view(bsz, q_len, self.num_heads, self.head_dim)
         | 
| 203 | 
            -
                    .transpose(1, 2)
         | 
| 204 | 
            -
                )
         | 
| 205 | 
            -
                key_states = (
         | 
| 206 | 
            -
                    self.k_proj(hidden_states)
         | 
| 207 | 
            -
                    .view(bsz, q_len, self.num_heads, self.head_dim)
         | 
| 208 | 
            -
                    .transpose(1, 2)
         | 
| 209 | 
            -
                )
         | 
| 210 | 
            -
                value_states = (
         | 
| 211 | 
            -
                    self.v_proj(hidden_states)
         | 
| 212 | 
            -
                    .view(bsz, q_len, self.num_heads, self.head_dim)
         | 
| 213 | 
            -
                    .transpose(1, 2)
         | 
| 214 | 
            -
                )
         | 
| 215 | 
            -
             | 
| 216 | 
            -
                kv_seq_len = key_states.shape[-2]
         | 
| 217 | 
            -
                if past_key_value is not None:
         | 
| 218 | 
            -
                    kv_seq_len += past_key_value[0].shape[-2]
         | 
| 219 | 
            -
                cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 220 | 
            -
                (
         | 
| 221 | 
            -
                    query_states,
         | 
| 222 | 
            -
                    key_states,
         | 
| 223 | 
            -
                ) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(
         | 
| 224 | 
            -
                    query_states, key_states, cos, sin, position_ids
         | 
| 225 | 
            -
                )
         | 
| 226 | 
            -
                # [bsz, nh, t, hd]
         | 
| 227 | 
            -
             | 
| 228 | 
            -
                if past_key_value is not None:
         | 
| 229 | 
            -
                    # reuse k, v, self_attention
         | 
| 230 | 
            -
                    key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 231 | 
            -
                    value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 232 | 
            -
             | 
| 233 | 
            -
                past_key_value = (key_states, value_states) if use_cache else None
         | 
| 234 | 
            -
             | 
| 235 | 
            -
                # We only apply sdp attention if we don't need to output the whole attention matrix
         | 
| 236 | 
            -
                if not output_attentions:
         | 
| 237 | 
            -
                    with torch.backends.cuda.sdp_kernel():
         | 
| 238 | 
            -
                        attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 239 | 
            -
                            query_states,
         | 
| 240 | 
            -
                            key_states,
         | 
| 241 | 
            -
                            value_states,
         | 
| 242 | 
            -
                            attn_mask=attention_mask,
         | 
| 243 | 
            -
                            is_causal=False,
         | 
| 244 | 
            -
                        )
         | 
| 245 | 
            -
                        attn_weights = None
         | 
| 246 | 
            -
                else:
         | 
| 247 | 
            -
                    attn_weights = torch.matmul(
         | 
| 248 | 
            -
                        query_states, key_states.transpose(2, 3)
         | 
| 249 | 
            -
                    ) / math.sqrt(self.head_dim)
         | 
| 250 | 
            -
             | 
| 251 | 
            -
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 252 | 
            -
                        raise ValueError(
         | 
| 253 | 
            -
                            f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 254 | 
            -
                            f" {attn_weights.size()}"
         | 
| 255 | 
            -
                        )
         | 
| 256 | 
            -
             | 
| 257 | 
            -
                    if attention_mask is not None:
         | 
| 258 | 
            -
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 259 | 
            -
                            raise ValueError(
         | 
| 260 | 
            -
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 261 | 
            -
                            )
         | 
| 262 | 
            -
                        attn_weights = attn_weights + attention_mask
         | 
| 263 | 
            -
                        attn_weights = torch.max(
         | 
| 264 | 
            -
                            attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
         | 
| 265 | 
            -
                        )
         | 
| 266 | 
            -
             | 
| 267 | 
            -
                    # upcast attention to fp32
         | 
| 268 | 
            -
                    attn_weights = nn.functional.softmax(
         | 
| 269 | 
            -
                        attn_weights, dim=-1, dtype=torch.float32
         | 
| 270 | 
            -
                    ).to(query_states.dtype)
         | 
| 271 | 
            -
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 272 | 
            -
             | 
| 273 | 
            -
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 274 | 
            -
                        raise ValueError(
         | 
| 275 | 
            -
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 276 | 
            -
                            f" {attn_output.size()}"
         | 
| 277 | 
            -
                        )
         | 
| 278 | 
            -
             | 
| 279 | 
            -
                attn_output = attn_output.transpose(1, 2)
         | 
| 280 | 
            -
                attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 281 | 
            -
             | 
| 282 | 
            -
                attn_output = self.o_proj(attn_output)
         | 
| 283 | 
            -
             | 
| 284 | 
            -
                return attn_output, attn_weights, past_key_value
         | 
|  | |
| 3 | 
             
            """
         | 
| 4 |  | 
| 5 | 
             
            import logging
         | 
| 6 | 
            +
            import warnings
         | 
| 7 | 
             
            from typing import Optional, Tuple
         | 
| 8 |  | 
| 9 | 
             
            import torch
         | 
| 10 | 
             
            import torch.nn.functional as F
         | 
| 11 | 
             
            import transformers.models.llama.modeling_llama
         | 
| 12 | 
            +
            from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
         | 
| 13 |  | 
| 14 | 
             
            try:
         | 
| 15 | 
             
                import xformers.ops
         | 
|  | |
| 21 | 
             
                transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
         | 
| 22 |  | 
| 23 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 24 | 
             
            def xformers_forward(
         | 
| 25 | 
             
                self,
         | 
| 26 | 
             
                hidden_states: torch.Tensor,
         | 
|  | |
| 75 | 
             
                value_states = value_states.view(
         | 
| 76 | 
             
                    bsz, q_len, self.num_key_value_heads, self.head_dim
         | 
| 77 | 
             
                ).transpose(1, 2)
         | 
| 78 | 
            +
                # [bsz, q_len, nh, hd]
         | 
| 79 | 
            +
                # [bsz, nh, q_len, hd]
         | 
| 80 |  | 
| 81 | 
             
                kv_seq_len = key_states.shape[-2]
         | 
| 82 | 
             
                if past_key_value is not None:
         | 
| 83 | 
             
                    kv_seq_len += past_key_value[0].shape[-2]
         | 
| 84 | 
            +
             | 
| 85 | 
             
                cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 86 | 
            +
                query_states, key_states = apply_rotary_pos_emb(
         | 
|  | |
|  | |
|  | |
| 87 | 
             
                    query_states, key_states, cos, sin, position_ids
         | 
| 88 | 
             
                )
         | 
| 89 | 
             
                # [bsz, nh, t, hd]
         | 
|  | |
| 96 | 
             
                past_key_value = (key_states, value_states) if use_cache else None
         | 
| 97 |  | 
| 98 | 
             
                # repeat k/v heads if n_kv_heads < n_heads
         | 
| 99 | 
            +
                key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 100 | 
            +
                value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
|  | |
|  | |
|  | |
|  | |
| 101 |  | 
| 102 | 
            +
                if output_attentions:
         | 
| 103 | 
            +
                    warnings.warn(
         | 
| 104 | 
            +
                        "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
         | 
| 105 | 
            +
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 106 |  | 
| 107 | 
            +
                #
         | 
| 108 | 
            +
                # xformers-attn start
         | 
| 109 | 
            +
                #
         | 
|  | |
|  | |
| 110 |  | 
| 111 | 
            +
                query_states = query_states.transpose(1, 2)
         | 
| 112 | 
            +
                key_states = key_states.transpose(1, 2)
         | 
| 113 | 
            +
                value_states = value_states.transpose(1, 2)
         | 
|  | |
|  | |
| 114 |  | 
| 115 | 
            +
                # This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
         | 
| 116 | 
            +
                # We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
         | 
| 117 | 
            +
                if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
         | 
| 118 | 
            +
                    # input and output should be of form (bsz, q_len, num_heads, head_dim)
         | 
| 119 | 
            +
                    attn_output = xformers.ops.memory_efficient_attention(
         | 
| 120 | 
            +
                        query_states, key_states, value_states, attn_bias=None
         | 
| 121 | 
            +
                    )
         | 
| 122 | 
            +
                else:
         | 
| 123 | 
            +
                    # input and output should be of form (bsz, q_len, num_heads, head_dim)
         | 
| 124 | 
            +
                    attn_output = xformers.ops.memory_efficient_attention(
         | 
| 125 | 
            +
                        query_states,
         | 
| 126 | 
            +
                        key_states,
         | 
| 127 | 
            +
                        value_states,
         | 
| 128 | 
            +
                        # attn_bias=attention_mask,
         | 
| 129 | 
            +
                        attn_bias=xformers.ops.LowerTriangularMask(),
         | 
| 130 | 
            +
                    )
         | 
| 131 |  | 
| 132 | 
            +
                if attn_output.size() != (bsz, q_len, self.num_heads, self.head_dim):
         | 
| 133 | 
            +
                    raise ValueError(
         | 
| 134 | 
            +
                        f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
         | 
| 135 | 
            +
                        f" {attn_output.size()}"
         | 
| 136 | 
            +
                    )
         | 
| 137 | 
             
                attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 138 |  | 
| 139 | 
            +
                #
         | 
| 140 | 
            +
                # xformers-attn end
         | 
| 141 | 
            +
                #
         | 
| 142 | 
            +
             | 
| 143 | 
             
                if self.pretraining_tp > 1:
         | 
| 144 | 
             
                    attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
         | 
| 145 | 
             
                    o_proj_slices = self.o_proj.weight.split(
         | 
|  | |
| 152 | 
             
                else:
         | 
| 153 | 
             
                    attn_output = self.o_proj(attn_output)
         | 
| 154 |  | 
| 155 | 
            +
                return attn_output, None, past_key_value
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        src/axolotl/utils/models.py
    CHANGED
    
    | @@ -103,7 +103,7 @@ def load_model( | |
| 103 | 
             
                        )
         | 
| 104 |  | 
| 105 | 
             
                        LOG.info("patching with flash attention")
         | 
| 106 | 
            -
                        replace_llama_attn_with_flash_attn()
         | 
| 107 | 
             
                elif cfg.is_llama_derived_model and cfg.xformers_attention:
         | 
| 108 | 
             
                    from axolotl.monkeypatch.llama_attn_hijack_xformers import (
         | 
| 109 | 
             
                        hijack_llama_attention,
         | 
| @@ -112,9 +112,7 @@ def load_model( | |
| 112 | 
             
                    LOG.info("patching with xformers attention")
         | 
| 113 | 
             
                    hijack_llama_attention()
         | 
| 114 | 
             
                elif cfg.is_llama_derived_model and cfg.sdp_attention:
         | 
| 115 | 
            -
                    from axolotl.monkeypatch. | 
| 116 | 
            -
                        hijack_llama_sdp_attention,
         | 
| 117 | 
            -
                    )
         | 
| 118 |  | 
| 119 | 
             
                    LOG.info("patching with sdp attention")
         | 
| 120 | 
             
                    hijack_llama_sdp_attention()
         | 
|  | |
| 103 | 
             
                        )
         | 
| 104 |  | 
| 105 | 
             
                        LOG.info("patching with flash attention")
         | 
| 106 | 
            +
                        replace_llama_attn_with_flash_attn(packed=cfg.sample_packing)
         | 
| 107 | 
             
                elif cfg.is_llama_derived_model and cfg.xformers_attention:
         | 
| 108 | 
             
                    from axolotl.monkeypatch.llama_attn_hijack_xformers import (
         | 
| 109 | 
             
                        hijack_llama_attention,
         | 
|  | |
| 112 | 
             
                    LOG.info("patching with xformers attention")
         | 
| 113 | 
             
                    hijack_llama_attention()
         | 
| 114 | 
             
                elif cfg.is_llama_derived_model and cfg.sdp_attention:
         | 
| 115 | 
            +
                    from axolotl.monkeypatch.llama_attn_hijack_sdp import hijack_llama_sdp_attention
         | 
|  | |
|  | |
| 116 |  | 
| 117 | 
             
                    LOG.info("patching with sdp attention")
         | 
| 118 | 
             
                    hijack_llama_sdp_attention()
         | 
 
		