kallewoof
fix: switch to using the HuggingFace Transformers NEFT implementation (#941)
ef24342
unverified
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora""" | |
import os | |
import signal | |
import sys | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import Optional | |
import torch | |
import transformers.modelcard | |
from accelerate.logging import get_logger | |
from datasets import Dataset | |
from optimum.bettertransformer import BetterTransformer | |
from transformers.deepspeed import is_deepspeed_zero3_enabled | |
from axolotl.common.cli import TrainerCliArgs | |
from axolotl.logging_config import configure_logging | |
from axolotl.utils.dict import DictDefault | |
from axolotl.utils.freeze import freeze_parameters_except | |
from axolotl.utils.models import load_model, load_tokenizer | |
from axolotl.utils.trainer import setup_trainer | |
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
src_dir = os.path.join(project_root, "src") | |
sys.path.insert(0, src_dir) | |
configure_logging() | |
LOG = get_logger("axolotl.train") | |
class TrainDatasetMeta: | |
""" | |
dataclass to capture the dataset specific options for training | |
""" | |
train_dataset: Dataset | |
eval_dataset: Optional[Dataset] = None | |
total_num_steps: Optional[int] = None | |
def train( | |
*, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta | |
): | |
# load the tokenizer first | |
LOG.debug( | |
f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}", | |
main_process_only=True, | |
) | |
tokenizer = load_tokenizer(cfg) | |
train_dataset = dataset_meta.train_dataset | |
eval_dataset = dataset_meta.eval_dataset | |
total_num_steps = dataset_meta.total_num_steps | |
# Load the model and tokenizer | |
msg = "loading model" | |
if cfg.adapter: | |
msg += " and peft_config..." | |
LOG.debug(msg) | |
model, peft_config = load_model(cfg, tokenizer, inference=cli_args.inference) | |
safe_serialization = cfg.save_safetensors is True | |
if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints: | |
possible_checkpoints = [ | |
str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*") | |
] | |
if len(possible_checkpoints) > 0: | |
sorted_paths = sorted( | |
possible_checkpoints, | |
key=lambda path: int(path.split("-")[-1]), | |
) | |
cfg.resume_from_checkpoint = sorted_paths[-1] | |
LOG.info( | |
f"Using Auto-resume functionality to start with checkpoint at {cfg.resume_from_checkpoint}" | |
) | |
resume_from_checkpoint = cfg.resume_from_checkpoint | |
if cfg.unfrozen_parameters: | |
freeze_parameters_except(model, cfg.unfrozen_parameters) | |
trainer = setup_trainer( | |
cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps | |
) | |
if hasattr(model, "config"): | |
model.config.use_cache = False | |
# go ahead and presave, so we have the adapter config available to inspect | |
if peft_config: | |
LOG.info(f"Pre-saving adapter config to {cfg.output_dir}") | |
peft_config.save_pretrained(cfg.output_dir) | |
# additionally presave the tokenizer and model configs | |
if not Path(cfg.output_dir).is_dir(): | |
os.makedirs(cfg.output_dir, exist_ok=True) | |
tokenizer.save_pretrained(str(Path(cfg.output_dir))) | |
if hasattr(model, "config"): | |
model.config.save_pretrained(str(Path(cfg.output_dir))) | |
# In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model | |
if cfg.local_rank == 0: | |
def terminate_handler(_, __, model): | |
if cfg.flash_optimum: | |
model = BetterTransformer.reverse(model) | |
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization) | |
sys.exit(0) | |
signal.signal( | |
signal.SIGINT, lambda signum, frame: terminate_handler(signum, frame, model) | |
) | |
badge_markdown = """[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)""" | |
transformers.modelcard.AUTOGENERATED_TRAINER_COMMENT += f"\n{badge_markdown}" | |
LOG.info("Starting trainer...") | |
if cfg.group_by_length: | |
LOG.info("hang tight... sorting dataset for group_by_length") | |
pretrain_hooks(cfg, trainer) | |
if cfg.flash_optimum: | |
with torch.backends.cuda.sdp_kernel( | |
enable_flash=True, enable_math=True, enable_mem_efficient=True | |
): | |
trainer.train(resume_from_checkpoint=resume_from_checkpoint) | |
else: | |
trainer.train(resume_from_checkpoint=resume_from_checkpoint) | |
post_train_hooks(cfg, trainer) | |
LOG.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}") | |
# post training | |
for name, module in model.named_modules(): | |
if hasattr(module, "_post_training"): | |
module._post_training(model, name) # pylint: disable=protected-access | |
if trainer.is_fsdp_enabled: | |
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") | |
LOG.info("Set FSDP state dict type to FULL_STATE_DICT for saving.") | |
if cfg.relora_steps: | |
if cfg.adapter == "lora" and not (cfg.load_in_4bit or cfg.load_in_8bit): | |
model = model.merge_and_unload() | |
else: | |
# final model weights have already been saved by `ReLoRACallback.on_train_end` | |
return model, tokenizer | |
# TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading | |
# only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file | |
if cfg.fsdp: | |
trainer.save_model(cfg.output_dir) | |
elif cfg.deepspeed and is_deepspeed_zero3_enabled(): | |
# Copied over from: https://github.com/huggingface/accelerate/blob/5ae611118057232f441055f7ef9ba0b0f2b8d533/docs/source/usage_guides/deepspeed.md#saving-and-loading | |
trainer.accelerator.wait_for_everyone() | |
unwrapped_model = trainer.accelerator.unwrap_model(trainer.model_wrapped) | |
# Saves the whole/unpartitioned fp16 model when in ZeRO Stage-3 to the output directory if | |
# `stage3_gather_16bit_weights_on_model_save` is True in DeepSpeed Config file or | |
# `zero3_save_16bit_model` is True in DeepSpeed Plugin. | |
# For Zero Stages 1 and 2, models are saved as usual in the output directory. | |
# The model name saved is `pytorch_model.bin` | |
unwrapped_model.save_pretrained( | |
cfg.output_dir, | |
is_main_process=trainer.accelerator.is_main_process, | |
save_function=trainer.accelerator.save, | |
state_dict=trainer.accelerator.get_state_dict(trainer.model_wrapped), | |
) | |
elif cfg.local_rank == 0: | |
if cfg.flash_optimum: | |
model = BetterTransformer.reverse(model) | |
model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization) | |
if not cfg.hub_model_id: | |
trainer.create_model_card(model_name=cfg.output_dir.lstrip("./")) | |
return model, tokenizer | |
def pretrain_hooks(_cfg, _trainer): | |
""" | |
Run hooks right before kicking off the training | |
:param cfg: | |
:param trainer: | |
:return: | |
""" | |
def post_train_hooks(_cfg, _trainer): | |
""" | |
Run hooks right after training completes | |
:param cfg: | |
:param trainer: | |
:return: | |
""" | |