qwerrwe / scripts /extract_lora.py
Nanobit's picture
Fix mypy typing
e9650d3
raw
history blame
5.2 kB
# import logging
# import os
# import random
# import signal
# import sys
# from pathlib import Path
# import fire
# import torch
# import yaml
# from addict import Dict
# from peft import set_peft_model_state_dict, get_peft_model_state_dict
# # add src to the pythonpath so we don't need to pip install this
# project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
# src_dir = os.path.join(project_root, "src")
# sys.path.insert(0, src_dir)
# from axolotl.utils.data import load_prepare_datasets
# from axolotl.utils.models import load_model
# from axolotl.utils.trainer import setup_trainer
# from axolotl.utils.wandb import setup_wandb_env_vars
# logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
# def choose_device(cfg):
# def get_device():
# if torch.cuda.is_available():
# return "cuda"
# else:
# try:
# if torch.backends.mps.is_available():
# return "mps"
# except:
# return "cpu"
# cfg.device = get_device()
# if cfg.device == "cuda":
# cfg.device_map = {"": cfg.local_rank}
# else:
# cfg.device_map = {"": cfg.device}
# def choose_config(path: Path):
# yaml_files = [file for file in path.glob("*.yml")]
# if not yaml_files:
# raise ValueError(
# "No YAML config files found in the specified directory. Are you using a .yml extension?"
# )
# print("Choose a YAML file:")
# for idx, file in enumerate(yaml_files):
# print(f"{idx + 1}. {file}")
# chosen_file = None
# while chosen_file is None:
# try:
# choice = int(input("Enter the number of your choice: "))
# if 1 <= choice <= len(yaml_files):
# chosen_file = yaml_files[choice - 1]
# else:
# print("Invalid choice. Please choose a number from the list.")
# except ValueError:
# print("Invalid input. Please enter a number.")
# return chosen_file
# def save_latest_checkpoint_as_lora(
# config: Path = Path("configs/"),
# prepare_ds_only: bool = False,
# **kwargs,
# ):
# if Path(config).is_dir():
# config = choose_config(config)
# # load the config from the yaml file
# with open(config, "r") as f:
# cfg: Dict = Dict(lambda: None, yaml.load(f, Loader=yaml.Loader))
# # if there are any options passed in the cli, if it is something that seems valid from the yaml,
# # then overwrite the value
# cfg_keys = dict(cfg).keys()
# for k in kwargs:
# if k in cfg_keys:
# # handle booleans
# if isinstance(cfg[k], bool):
# cfg[k] = bool(kwargs[k])
# else:
# cfg[k] = kwargs[k]
# # setup some derived config / hyperparams
# cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
# cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
# cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
# assert cfg.local_rank == 0, "Run this with only one device!"
# choose_device(cfg)
# cfg.ddp = False
# if cfg.device == "mps":
# cfg.load_in_8bit = False
# cfg.tf32 = False
# if cfg.bf16:
# cfg.fp16 = True
# cfg.bf16 = False
# # Load the model and tokenizer
# logging.info("loading model, tokenizer, and lora_config...")
# model, tokenizer, lora_config = load_model(
# cfg.base_model,
# cfg.base_model_config,
# cfg.model_type,
# cfg.tokenizer_type,
# cfg,
# adapter=cfg.adapter,
# inference=True,
# )
# model.config.use_cache = False
# if torch.__version__ >= "2" and sys.platform != "win32":
# logging.info("Compiling torch model")
# model = torch.compile(model)
# possible_checkpoints = [str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*")]
# if len(possible_checkpoints) > 0:
# sorted_paths = sorted(
# possible_checkpoints, key=lambda path: int(path.split("-")[-1])
# )
# resume_from_checkpoint = sorted_paths[-1]
# else:
# raise FileNotFoundError("Checkpoints folder not found")
# pytorch_bin_path = os.path.join(resume_from_checkpoint, "pytorch_model.bin")
# assert os.path.exists(pytorch_bin_path), "Bin not found"
# logging.info(f"Loading {pytorch_bin_path}")
# adapters_weights = torch.load(pytorch_bin_path, map_location="cpu")
# # d = get_peft_model_state_dict(model)
# print(model.load_state_dict(adapters_weights))
# # with open('b.log', "w") as f:
# # f.write(str(d.keys()))
# assert False
# print((adapters_weights.keys()))
# with open("a.log", "w") as f:
# f.write(str(adapters_weights.keys()))
# assert False
# logging.info("Setting peft model state dict")
# set_peft_model_state_dict(model, adapters_weights)
# logging.info(f"Set Completed!!! Saving pre-trained model to {cfg.output_dir}")
# model.save_pretrained(cfg.output_dir)
# if __name__ == "__main__":
# fire.Fire(save_latest_checkpoint_as_lora)