# import logging | |
# import os | |
# import random | |
# import signal | |
# import sys | |
# from pathlib import Path | |
# import fire | |
# import torch | |
# import yaml | |
# from addict import Dict | |
# from peft import set_peft_model_state_dict, get_peft_model_state_dict | |
# # add src to the pythonpath so we don't need to pip install this | |
# project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
# src_dir = os.path.join(project_root, "src") | |
# sys.path.insert(0, src_dir) | |
# from axolotl.utils.data import load_prepare_datasets | |
# from axolotl.utils.models import load_model | |
# from axolotl.utils.trainer import setup_trainer | |
# from axolotl.utils.wandb import setup_wandb_env_vars | |
# logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO")) | |
# def choose_device(cfg): | |
# def get_device(): | |
# if torch.cuda.is_available(): | |
# return "cuda" | |
# else: | |
# try: | |
# if torch.backends.mps.is_available(): | |
# return "mps" | |
# except: | |
# return "cpu" | |
# cfg.device = get_device() | |
# if cfg.device == "cuda": | |
# cfg.device_map = {"": cfg.local_rank} | |
# else: | |
# cfg.device_map = {"": cfg.device} | |
# def choose_config(path: Path): | |
# yaml_files = [file for file in path.glob("*.yml")] | |
# if not yaml_files: | |
# raise ValueError( | |
# "No YAML config files found in the specified directory. Are you using a .yml extension?" | |
# ) | |
# print("Choose a YAML file:") | |
# for idx, file in enumerate(yaml_files): | |
# print(f"{idx + 1}. {file}") | |
# chosen_file = None | |
# while chosen_file is None: | |
# try: | |
# choice = int(input("Enter the number of your choice: ")) | |
# if 1 <= choice <= len(yaml_files): | |
# chosen_file = yaml_files[choice - 1] | |
# else: | |
# print("Invalid choice. Please choose a number from the list.") | |
# except ValueError: | |
# print("Invalid input. Please enter a number.") | |
# return chosen_file | |
# def save_latest_checkpoint_as_lora( | |
# config: Path = Path("configs/"), | |
# prepare_ds_only: bool = False, | |
# **kwargs, | |
# ): | |
# if Path(config).is_dir(): | |
# config = choose_config(config) | |
# # load the config from the yaml file | |
# with open(config, "r") as f: | |
# cfg: Dict = Dict(lambda: None, yaml.load(f, Loader=yaml.Loader)) | |
# # if there are any options passed in the cli, if it is something that seems valid from the yaml, | |
# # then overwrite the value | |
# cfg_keys = dict(cfg).keys() | |
# for k in kwargs: | |
# if k in cfg_keys: | |
# # handle booleans | |
# if isinstance(cfg[k], bool): | |
# cfg[k] = bool(kwargs[k]) | |
# else: | |
# cfg[k] = kwargs[k] | |
# # setup some derived config / hyperparams | |
# cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size | |
# cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) | |
# cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) | |
# assert cfg.local_rank == 0, "Run this with only one device!" | |
# choose_device(cfg) | |
# cfg.ddp = False | |
# if cfg.device == "mps": | |
# cfg.load_in_8bit = False | |
# cfg.tf32 = False | |
# if cfg.bf16: | |
# cfg.fp16 = True | |
# cfg.bf16 = False | |
# # Load the model and tokenizer | |
# logging.info("loading model, tokenizer, and lora_config...") | |
# model, tokenizer, lora_config = load_model( | |
# cfg.base_model, | |
# cfg.base_model_config, | |
# cfg.model_type, | |
# cfg.tokenizer_type, | |
# cfg, | |
# adapter=cfg.adapter, | |
# inference=True, | |
# ) | |
# model.config.use_cache = False | |
# if torch.__version__ >= "2" and sys.platform != "win32": | |
# logging.info("Compiling torch model") | |
# model = torch.compile(model) | |
# possible_checkpoints = [str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*")] | |
# if len(possible_checkpoints) > 0: | |
# sorted_paths = sorted( | |
# possible_checkpoints, key=lambda path: int(path.split("-")[-1]) | |
# ) | |
# resume_from_checkpoint = sorted_paths[-1] | |
# else: | |
# raise FileNotFoundError("Checkpoints folder not found") | |
# pytorch_bin_path = os.path.join(resume_from_checkpoint, "pytorch_model.bin") | |
# assert os.path.exists(pytorch_bin_path), "Bin not found" | |
# logging.info(f"Loading {pytorch_bin_path}") | |
# adapters_weights = torch.load(pytorch_bin_path, map_location="cpu") | |
# # d = get_peft_model_state_dict(model) | |
# print(model.load_state_dict(adapters_weights)) | |
# # with open('b.log', "w") as f: | |
# # f.write(str(d.keys())) | |
# assert False | |
# print((adapters_weights.keys())) | |
# with open("a.log", "w") as f: | |
# f.write(str(adapters_weights.keys())) | |
# assert False | |
# logging.info("Setting peft model state dict") | |
# set_peft_model_state_dict(model, adapters_weights) | |
# logging.info(f"Set Completed!!! Saving pre-trained model to {cfg.output_dir}") | |
# model.save_pretrained(cfg.output_dir) | |
# if __name__ == "__main__": | |
# fire.Fire(save_latest_checkpoint_as_lora) | |