|  | """ | 
					
						
						|  | E2E tests for lora llama | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import unittest | 
					
						
						|  | from pathlib import Path | 
					
						
						|  |  | 
					
						
						|  | import pytest | 
					
						
						|  |  | 
					
						
						|  | from axolotl.cli import load_rl_datasets | 
					
						
						|  | from axolotl.common.cli import TrainerCliArgs | 
					
						
						|  | from axolotl.train import train | 
					
						
						|  | from axolotl.utils.config import normalize_config | 
					
						
						|  | from axolotl.utils.dict import DictDefault | 
					
						
						|  |  | 
					
						
						|  | from .utils import with_temp_dir | 
					
						
						|  |  | 
					
						
						|  | LOG = logging.getLogger("axolotl.tests.e2e") | 
					
						
						|  | os.environ["WANDB_DISABLED"] = "true" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @pytest.mark.skip(reason="doesn't seem to work on modal") | 
					
						
						|  | class TestDPOLlamaLora(unittest.TestCase): | 
					
						
						|  | """ | 
					
						
						|  | Test case for DPO Llama models using LoRA | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | @with_temp_dir | 
					
						
						|  | def test_dpo_lora(self, temp_dir): | 
					
						
						|  |  | 
					
						
						|  | cfg = DictDefault( | 
					
						
						|  | { | 
					
						
						|  | "base_model": "JackFram/llama-68m", | 
					
						
						|  | "tokenizer_type": "LlamaTokenizer", | 
					
						
						|  | "sequence_len": 1024, | 
					
						
						|  | "load_in_8bit": True, | 
					
						
						|  | "adapter": "lora", | 
					
						
						|  | "lora_r": 64, | 
					
						
						|  | "lora_alpha": 32, | 
					
						
						|  | "lora_dropout": 0.1, | 
					
						
						|  | "lora_target_linear": True, | 
					
						
						|  | "special_tokens": {}, | 
					
						
						|  | "rl": "dpo", | 
					
						
						|  | "datasets": [ | 
					
						
						|  | { | 
					
						
						|  | "path": "Intel/orca_dpo_pairs", | 
					
						
						|  | "type": "chatml.intel", | 
					
						
						|  | "split": "train", | 
					
						
						|  | }, | 
					
						
						|  | ], | 
					
						
						|  | "num_epochs": 1, | 
					
						
						|  | "micro_batch_size": 4, | 
					
						
						|  | "gradient_accumulation_steps": 1, | 
					
						
						|  | "output_dir": temp_dir, | 
					
						
						|  | "learning_rate": 0.00001, | 
					
						
						|  | "optimizer": "paged_adamw_8bit", | 
					
						
						|  | "lr_scheduler": "cosine", | 
					
						
						|  | "max_steps": 20, | 
					
						
						|  | "save_steps": 10, | 
					
						
						|  | "warmup_steps": 5, | 
					
						
						|  | "gradient_checkpointing": True, | 
					
						
						|  | "gradient_checkpointing_kwargs": {"use_reentrant": True}, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | normalize_config(cfg) | 
					
						
						|  | cli_args = TrainerCliArgs() | 
					
						
						|  | dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) | 
					
						
						|  |  | 
					
						
						|  | train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | 
					
						
						|  | assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists() | 
					
						
						|  |  | 
					
						
						|  | @with_temp_dir | 
					
						
						|  | def test_kto_pair_lora(self, temp_dir): | 
					
						
						|  |  | 
					
						
						|  | cfg = DictDefault( | 
					
						
						|  | { | 
					
						
						|  | "base_model": "JackFram/llama-68m", | 
					
						
						|  | "tokenizer_type": "LlamaTokenizer", | 
					
						
						|  | "sequence_len": 1024, | 
					
						
						|  | "load_in_8bit": True, | 
					
						
						|  | "adapter": "lora", | 
					
						
						|  | "lora_r": 64, | 
					
						
						|  | "lora_alpha": 32, | 
					
						
						|  | "lora_dropout": 0.1, | 
					
						
						|  | "lora_target_linear": True, | 
					
						
						|  | "special_tokens": {}, | 
					
						
						|  | "rl": "kto_pair", | 
					
						
						|  | "datasets": [ | 
					
						
						|  | { | 
					
						
						|  | "path": "Intel/orca_dpo_pairs", | 
					
						
						|  | "type": "chatml.intel", | 
					
						
						|  | "split": "train", | 
					
						
						|  | }, | 
					
						
						|  | ], | 
					
						
						|  | "num_epochs": 1, | 
					
						
						|  | "micro_batch_size": 4, | 
					
						
						|  | "gradient_accumulation_steps": 1, | 
					
						
						|  | "output_dir": temp_dir, | 
					
						
						|  | "learning_rate": 0.00001, | 
					
						
						|  | "optimizer": "paged_adamw_8bit", | 
					
						
						|  | "lr_scheduler": "cosine", | 
					
						
						|  | "max_steps": 20, | 
					
						
						|  | "save_steps": 10, | 
					
						
						|  | "warmup_steps": 5, | 
					
						
						|  | "gradient_checkpointing": True, | 
					
						
						|  | "gradient_checkpointing_kwargs": {"use_reentrant": True}, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | normalize_config(cfg) | 
					
						
						|  | cli_args = TrainerCliArgs() | 
					
						
						|  | dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) | 
					
						
						|  |  | 
					
						
						|  | train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | 
					
						
						|  | assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists() | 
					
						
						|  |  | 
					
						
						|  | @with_temp_dir | 
					
						
						|  | def test_ipo_lora(self, temp_dir): | 
					
						
						|  |  | 
					
						
						|  | cfg = DictDefault( | 
					
						
						|  | { | 
					
						
						|  | "base_model": "JackFram/llama-68m", | 
					
						
						|  | "tokenizer_type": "LlamaTokenizer", | 
					
						
						|  | "sequence_len": 1024, | 
					
						
						|  | "load_in_8bit": True, | 
					
						
						|  | "adapter": "lora", | 
					
						
						|  | "lora_r": 64, | 
					
						
						|  | "lora_alpha": 32, | 
					
						
						|  | "lora_dropout": 0.1, | 
					
						
						|  | "lora_target_linear": True, | 
					
						
						|  | "special_tokens": {}, | 
					
						
						|  | "rl": "ipo", | 
					
						
						|  | "datasets": [ | 
					
						
						|  | { | 
					
						
						|  | "path": "Intel/orca_dpo_pairs", | 
					
						
						|  | "type": "chatml.intel", | 
					
						
						|  | "split": "train", | 
					
						
						|  | }, | 
					
						
						|  | ], | 
					
						
						|  | "num_epochs": 1, | 
					
						
						|  | "micro_batch_size": 4, | 
					
						
						|  | "gradient_accumulation_steps": 1, | 
					
						
						|  | "output_dir": temp_dir, | 
					
						
						|  | "learning_rate": 0.00001, | 
					
						
						|  | "optimizer": "paged_adamw_8bit", | 
					
						
						|  | "lr_scheduler": "cosine", | 
					
						
						|  | "max_steps": 20, | 
					
						
						|  | "save_steps": 10, | 
					
						
						|  | "warmup_steps": 5, | 
					
						
						|  | "gradient_checkpointing": True, | 
					
						
						|  | "gradient_checkpointing_kwargs": {"use_reentrant": True}, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | normalize_config(cfg) | 
					
						
						|  | cli_args = TrainerCliArgs() | 
					
						
						|  | dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args) | 
					
						
						|  |  | 
					
						
						|  | train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | 
					
						
						|  | assert (Path(temp_dir) / "checkpoint-20/adapter_model.safetensors").exists() | 
					
						
						|  |  |