winglian's picture
new prompters, misc fixes for output dir missing using fsdp, and changing max seq len
4ac9e25
raw
history blame
2.22 kB
"""Module containing the AlpacaQAPromptTokenizingStrategy class"""
from typing import Tuple
from axolotl.prompt_tokenizers import (
AlpacaPromptTokenizingStrategy,
InstructionPromptTokenizingStrategy,
)
from axolotl.prompters import AlpacaPrompter, PromptStyle
def load(tokenizer, cfg):
return AlpacaPromptTokenizingStrategy(
AlpacaPrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
class AlpacaConcisePrompter(AlpacaPrompter):
"""
Alpaca Prompter extending the system prompt to ask for concise answers
"""
system_prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that concisely and appropriately completes the request.\n\n"
system_no_input_prompt = "Below is an instruction that describes a task. Write a response that appropriately and concisely completes the request.\n\n"
class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for AlpacaQA
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["question"],
"",
prompt["answer"],
)
class CamelAIPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for CamelAI datasets
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["message_1"],
"",
prompt["message_1"],
)
def load_concise(tokenizer, cfg):
return AlpacaPromptTokenizingStrategy(
AlpacaConcisePrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_qa(tokenizer, cfg):
return AlpacaQAPromptTokenizingStrategy(
AlpacaPrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_camel_ai(tokenizer, cfg):
return CamelAIPromptTokenizingStrategy(
AlpacaPrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)