qwerrwe / src /axolotl /utils /dataloader.py
casperhansen's picture
Threaded MultipackDistributedDataloader with prefetched samples (#759)
05bd6f1 unverified
raw
history blame
11.1 kB
# pylint: skip-file
import hashlib
import itertools
import logging
import math
import time
from queue import Queue
from threading import Thread
from typing import Any, Callable, List, Union
import numba
import numpy as np
from torch.utils.data import DistributedSampler, Sampler
LOG = logging.getLogger("axolotl.utils.dataloader")
@numba.njit
def ffd_check(a: np.ndarray, c: int, n: int):
# First-fit-decreasing bin packing
# Check if a[] could fit in n bins with capacity c
# https://en.wikipedia.org/wiki/First-fit-decreasing_bin_packing
a = np.sort(a)[::-1]
bins = np.full((n,), c, dtype=a.dtype)
for size in a:
not_found = True
for idx in range(n):
if bins[idx] >= size:
bins[idx] -= size
not_found = False
break
if not_found:
return False
return True
@numba.njit
def ffd_with_result(a: np.ndarray, c: int, start_index: int):
# First-fit-decreasing bin packing (with result return)
indices = np.argsort(a)[::-1]
a = a[indices]
bins: List[Any] = []
bins_result: List[Any] = []
for a_id, size in enumerate(a):
add_new = True
for idx in range(len(bins)):
if bins[idx] >= size:
bins[idx] -= size
bins_result[idx].append(indices[a_id] + start_index)
add_new = False
break
if add_new:
bins.append(c - size)
bins_result.append([indices[a_id] + start_index])
return bins_result, len(a)
@numba.njit
def allocate(
lengths: np.ndarray, lengths_cumsum: np.ndarray, rank: int, c: int, n: int
):
"""
:param lengths: array of lengths of each sample
:param lengths_cumsum: cumulative sum of consecutive lengths
:param rank: rank for this process
:param c: length of tokens per batch
:param n: number of ranks
:return:
"""
# Dynamic batch allocator, similar to Multifit
# https://en.wikipedia.org/wiki/Multifit_algorithm
# ~99.5% efficiency on OpenChat training set (12 * 2048 ctx len)
s = 0
start_index = 0
result = []
result_totseqs = []
while True:
# binary search [left, right)
left = 1
right = 1 + np.searchsorted(lengths_cumsum[start_index:], s + c * n, "right")
while right - left > 1:
mid = (left + right) // 2
if ffd_check(lengths[start_index : start_index + mid], c, n):
left = mid
else:
right = mid
# use length left
batch, tot_seqs = ffd_with_result(
lengths[start_index : start_index + left], c, start_index
)
if len(batch) < n:
break
start_index += left
s = lengths_cumsum[start_index - 1]
# add local rank
result.append(batch[rank])
# add total seqs for all ranks
result_totseqs.append(tot_seqs)
# yield batch[rank], tot_seqs, s, len(result) * c * n
return result, result_totseqs, s, len(result) * c * n
def chunk(iterable, n):
"""
Chunk data into tuples of length n
"""
# batched('ABCDEFG', 3) --> ABC DEF G
if n < 1:
raise ValueError("n must be at least one")
it = iter(iterable)
while batch := tuple(itertools.islice(it, n)):
yield batch
def hash_indices(lst: List[int]) -> str:
# Convert the list of integers to a string representation
concatenated = ",".join(map(str, lst))
# Generate the hash
sha256 = hashlib.sha256()
sha256.update(concatenated.encode())
return sha256.hexdigest()
class MultipackDistributedDataloader:
"""Unpadded data loading using Multipack.
Adapted from https://github.com/imoneoi/openchat/blob/v3_fix_mle_loss/ochat/training_deepspeed/multipack_dataloader.py
Approximate (at most ~1.22x) the optimal solution of the identical-machines scheduling problem, which is NP-hard.
"""
def __init__(
self,
dataset: Any,
collate_fn: Callable,
seq_max_length: int = 2048,
batch_size: int = 1,
sampler: Union[Sampler, DistributedSampler] = None,
packing_efficiency_estimate: float = 1.0,
sample_packing_seq_len_multiplier: int = 1,
device_count: int = 1,
prefetch_max: int = 1000,
num_epochs: int = 1,
):
# Dataset
self.dataset = dataset
self.lengths = (
dataset.data.column("position_ids")
.to_pandas()
.apply(lambda x: x[-1] + 1)
.values
)
assert isinstance(self.lengths, np.ndarray)
assert batch_size % sample_packing_seq_len_multiplier == 0
assert batch_size >= sample_packing_seq_len_multiplier
self.sampler = sampler
self.batch_size = batch_size
self.sample_packing_seq_len_multiplier = sample_packing_seq_len_multiplier
self.seq_max_length = seq_max_length
self.batch_max_length = batch_size * seq_max_length
self.collate_fn = collate_fn
self.num_epochs = num_epochs
self.num_replicas = 1
self.rank = 0
# statistics
self.eff_total_used = 0
self.eff_total_slots = 0
self.packing_efficiency_estimate = packing_efficiency_estimate or 1.0
self.device_count = device_count
# maxsize is maximum number of samples in queue
self.prefetch_max = prefetch_max
self.queue: Queue = Queue(maxsize=prefetch_max)
self.thread = None
def _worker(self):
LOG.info(
f"[WORKER] Epochs: {self.num_epochs}, Samples: {self.len_w_stats()*self.batch_size}"
)
for epoch in range(self.num_epochs):
for sample in self._internal_batch_generator():
while True:
if self.queue.full():
time.sleep(1)
else:
break
self.queue.put(sample)
# stop the queue when epoch is done
self.queue.put(None)
def __iter__(self):
if hasattr(self.sampler, "set_epoch"):
new_epoch = self.sampler.epoch + 1
self.sampler.set_epoch(new_epoch)
LOG.info(f"calling sampler.set_epoch({new_epoch})")
if self.thread is None:
self.thread = Thread(target=self._worker, daemon=True)
self.thread.start()
while True:
item = self.queue.get()
if item is None:
break
yield item
def generate_batches(self, set_stats=False):
LOG.info("generating packed batches")
if self.sampler:
indices = [idx for idx in self.sampler]
else:
indices = range(0, len(self.dataset))
LOG.info(hash_indices(indices))
lengths = self.lengths[indices]
lengths_cumsum = np.cumsum(lengths)
batches, totseqs, total_used, total_slots = allocate(
lengths=lengths,
lengths_cumsum=lengths_cumsum,
rank=self.rank,
# c=self.batch_max_length,
c=self.seq_max_length * self.sample_packing_seq_len_multiplier,
n=self.num_replicas,
)
batches = [[indices[b_idx] for b_idx in batch] for batch in batches]
# statistics
if set_stats:
self.eff_total_used += total_used
self.eff_total_slots += total_slots
return batches, totseqs
def _internal_batch_generator(self):
all_batches, _ = self.generate_batches(set_stats=True)
features = self.dataset.features.keys()
len_remaining = self._len_est()
for batches in chunk(
all_batches, self.batch_size // self.sample_packing_seq_len_multiplier
):
chunked_data = []
attn_mask_cum_idx = 0
for batch in batches:
concatenated = {}
batched_data = [self.dataset[batch_idx] for batch_idx in batch]
for feature in features:
if feature == "length":
continue
if feature == "attention_mask":
arrays = [
(attn_mask_cum_idx + idx + 1) * np.array(item[feature])
for idx, item in enumerate(batched_data)
if feature in item
]
attn_mask_cum_idx += len(batched_data)
concatenated[feature] = np.concatenate(arrays)
else:
arrays = [
np.array(item[feature])
for item in batched_data
if feature in item
]
concatenated[feature] = np.concatenate(arrays)
chunked_data.append(concatenated)
yield self.collate_fn(chunked_data)
len_remaining -= 1
if not len_remaining:
return
# yield a no-op for cases where we don't have any data left to pack
for i in range(0, len_remaining):
yield self.collate_fn(
[
{
"input_ids": [0],
"labels": [-100],
"attention_mask": [True],
"position_ids": [0],
}
]
)
def _len_est(self):
lengths_sum = np.sum(self.lengths)
lengths_sum_per_device = lengths_sum // self.device_count
LOG.info(
f"packing_efficiency_estimate: {self.packing_efficiency_estimate} "
f"total_num_tokens per device: {lengths_sum_per_device}"
)
# shave off 1% + 1 for dealing with variance in packing from random sampler to sampler
return (
math.floor(
0.99
* lengths_sum_per_device
/ self.packing_efficiency_estimate
// self.seq_max_length
// self.batch_size
)
- 1
)
def __len__(self):
# this doesn't return the actual length b/c with distributed samplers, not all dataloaders get
# the same share of total tokens
# if not self.eff_total_used:
# batches, _ = self.generate_batches(set_stats=True)
# LOG.info(
# f"packing_efficiency_estimate: {self.packing_efficiency_estimate} "
# f"actual packing efficiency: {self.efficiency()}"
# )
return max(1, self._len_est())
def len_w_stats(self):
if not self.eff_total_used:
batches, _ = self.generate_batches(set_stats=True)
LOG.info(
f"packing_efficiency_estimate: {self.packing_efficiency_estimate} "
f"actual packing efficiency: {self.efficiency()}"
)
return max(1, self._len_est())
def efficiency(self):
return self.eff_total_used / self.eff_total_slots