File size: 3,848 Bytes
12a2dbb 0402d19 12a2dbb c74f045 7de6a56 12a2dbb 0402d19 6dc68a6 12a2dbb 9bf854e 12a2dbb 03e5907 12a2dbb 03e5907 12a2dbb 6dc68a6 12a2dbb 03e5907 12a2dbb 03e5907 12a2dbb 6dc68a6 12a2dbb 0402d19 6dc68a6 12a2dbb 9bf854e 12a2dbb 03e5907 12a2dbb 03e5907 12a2dbb 6dc68a6 12a2dbb 03e5907 12a2dbb 03e5907 12a2dbb 6dc68a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
"""
E2E tests for lora llama
"""
import logging
import os
import unittest
from pathlib import Path
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from .utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class TestPhi(unittest.TestCase):
"""
Test case for Llama models using LoRA
"""
@with_temp_dir
def test_ft(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "microsoft/phi-1_5",
"trust_remote_code": True,
"model_type": "PhiForCausalLM",
"tokenizer_type": "AutoTokenizer",
"sequence_len": 512,
"sample_packing": False,
"load_in_8bit": False,
"adapter": None,
"val_set_size": 0.1,
"special_tokens": {
"unk_token": "<|endoftext|>",
"bos_token": "<|endoftext|>",
"eos_token": "<|endoftext|>",
"pad_token": "<|endoftext|>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"dataset_shard_num": 10,
"dataset_shard_idx": 0,
"num_epochs": 1,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_bnb_8bit",
"lr_scheduler": "cosine",
"bf16": True,
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "pytorch_model.bin").exists()
@with_temp_dir
def test_ft_packed(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "microsoft/phi-1_5",
"trust_remote_code": True,
"model_type": "PhiForCausalLM",
"tokenizer_type": "AutoTokenizer",
"sequence_len": 512,
"sample_packing": True,
"load_in_8bit": False,
"adapter": None,
"val_set_size": 0.1,
"special_tokens": {
"unk_token": "<|endoftext|>",
"bos_token": "<|endoftext|>",
"eos_token": "<|endoftext|>",
"pad_token": "<|endoftext|>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"dataset_shard_num": 10,
"dataset_shard_idx": 0,
"num_epochs": 1,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_bnb_8bit",
"lr_scheduler": "cosine",
"bf16": True,
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "pytorch_model.bin").exists()
|