File size: 3,002 Bytes
			
			| ca84cca 0865613 ca84cca 0ce1a65 ca84cca 2d8def6 0ce1a65 0865613 782b6a4 0865613 782b6a4 0865613 782b6a4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | """
Test classes for checking functionality of the cfg normalization
"""
import unittest
from unittest.mock import patch
from axolotl.utils.config import normalize_cfg_datasets, normalize_config
from axolotl.utils.dict import DictDefault
class NormalizeConfigTestCase(unittest.TestCase):
    """
    test class for normalize_config checks
    """
    def _get_base_cfg(self):
        return DictDefault(
            {
                "base_model": "JackFram/llama-68m",
                "base_model_config": "JackFram/llama-68m",
                "tokenizer_type": "LlamaTokenizer",
                "num_epochs": 1,
                "micro_batch_size": 1,
                "gradient_accumulation_steps": 1,
            }
        )
    def test_lr_as_float(self):
        cfg = (
            self._get_base_cfg()
            | DictDefault(  # pylint: disable=unsupported-binary-operation
                {
                    "learning_rate": "5e-5",
                }
            )
        )
        normalize_config(cfg)
        assert cfg.learning_rate == 0.00005
    def test_base_model_config_set_when_empty(self):
        cfg = self._get_base_cfg()
        del cfg.base_model_config
        normalize_config(cfg)
        assert cfg.base_model_config == cfg.base_model
    def test_chat_template_chatml(self):
        cfg = DictDefault(
            {
                "chat_template": "chatml",
                "datasets": [
                    {
                        "path": "lorem/ipsum",
                        "type": "sharegpt",
                        "conversation": "vicuna_v1.1",
                    },
                    {
                        "path": "sit/amet",
                        "type": "sharegpt",
                    },
                ],
            }
        )
        normalize_cfg_datasets(cfg)
        assert cfg.datasets[0].conversation == "vicuna_v1.1"
        assert cfg.datasets[1].conversation == "chatml"
    @patch("axolotl.utils.config.is_torch_bf16_gpu_available")
    def test_bf16_auto_setter_available(self, mock_bf16_avail):
        cfg = self._get_base_cfg()
        cfg.bf16 = "auto"
        mock_bf16_avail.return_value = True
        normalize_config(cfg)
        self.assertTrue(cfg.bf16)
        self.assertFalse(cfg.fp16)
    @patch("axolotl.utils.config.is_torch_bf16_gpu_available")
    def test_bf16_auto_setter_not_available(self, mock_bf16_avail):
        cfg = self._get_base_cfg()
        cfg.bf16 = "auto"
        cfg.fp16 = None
        mock_bf16_avail.return_value = False
        normalize_config(cfg)
        self.assertFalse(cfg.bf16)
        self.assertTrue(cfg.fp16)
    @patch("axolotl.utils.config.is_torch_bf16_gpu_available")
    def test_bf16_disables_fp16(self, mock_bf16_avail):
        cfg = self._get_base_cfg()
        cfg.bf16 = True
        cfg.fp16 = False
        mock_bf16_avail.return_value = True
        normalize_config(cfg)
        self.assertTrue(cfg.bf16)
        self.assertFalse(cfg.fp16)
 |