File size: 1,322 Bytes
861ceca
 
 
1c412c7
861ceca
 
 
 
d66b101
861ceca
 
 
85b0be2
861ceca
 
f243c21
861ceca
 
 
 
 
1c412c7
 
861ceca
 
 
 
5ea3aa3
861ceca
85b0be2
861ceca
d66b101
861ceca
 
d66b101
 
 
 
 
 
f243c21
 
 
 
861ceca
 
 
8dcd40a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
CLI to run training on a model
"""
import logging
from pathlib import Path

import fire
import transformers
from datasets import disable_caching

from axolotl.cli import (
    check_accelerate_default_config,
    check_user_token,
    load_cfg,
    load_datasets,
    load_rl_datasets,
    print_axolotl_text_art,
)
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train

LOG = logging.getLogger("axolotl.cli.train")


def do_cli(config: Path = Path("examples/"), **kwargs):
    # pylint: disable=duplicate-code
    parsed_cfg = load_cfg(config, **kwargs)
    print_axolotl_text_art()
    check_accelerate_default_config()
    check_user_token()
    parser = transformers.HfArgumentParser((TrainerCliArgs))
    parsed_cli_args, remaining_args = parser.parse_args_into_dataclasses(
        return_remaining_strings=True
    )

    if (
        remaining_args.get("disable_caching") is not None
        and remaining_args["disable_caching"]
    ):
        disable_caching()
    if parsed_cfg.rl:
        dataset_meta = load_rl_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args)
    else:
        dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args)
    train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta)


if __name__ == "__main__":
    fire.Fire(do_cli)