File size: 3,937 Bytes
12a2dbb
 
 
 
 
 
 
0402d19
12a2dbb
 
 
 
 
 
c74f045
 
12a2dbb
 
 
 
 
 
 
 
 
 
0402d19
 
12a2dbb
 
 
 
 
 
 
03e5907
12a2dbb
03e5907
12a2dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0402d19
12a2dbb
03e5907
12a2dbb
03e5907
12a2dbb
 
 
 
 
 
 
0402d19
12a2dbb
0402d19
 
12a2dbb
 
 
 
 
 
 
03e5907
12a2dbb
03e5907
12a2dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0402d19
12a2dbb
03e5907
12a2dbb
03e5907
12a2dbb
 
 
 
 
 
 
0402d19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""
E2E tests for lora llama
"""

import logging
import os
import unittest
from pathlib import Path

from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from .utils import with_temp_dir  # pylint: disable=relative-beyond-top-level

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestPhi(unittest.TestCase):
    """
    Test case for Llama models using LoRA
    """

    @with_temp_dir
    def test_ft(self, output_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "microsoft/phi-1_5",
                "trust_remote_code": True,
                "model_type": "MixFormerSequentialForCausalLM",
                "tokenizer_type": "AutoTokenizer",
                "sequence_len": 512,
                "sample_packing": False,
                "load_in_8bit": False,
                "adapter": None,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<|endoftext|>",
                    "bos_token": "<|endoftext|>",
                    "eos_token": "<|endoftext|>",
                    "pad_token": "<|endoftext|>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "dataset_shard_num": 10,
                "dataset_shard_idx": 0,
                "num_epochs": 1,
                "micro_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "output_dir": output_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_bnb_8bit",
                "lr_scheduler": "cosine",
                "bf16": True,
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(output_dir) / "pytorch_model.bin").exists()

    @with_temp_dir
    def test_ft_packed(self, output_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "microsoft/phi-1_5",
                "trust_remote_code": True,
                "model_type": "MixFormerSequentialForCausalLM",
                "tokenizer_type": "AutoTokenizer",
                "sequence_len": 512,
                "sample_packing": True,
                "load_in_8bit": False,
                "adapter": None,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<|endoftext|>",
                    "bos_token": "<|endoftext|>",
                    "eos_token": "<|endoftext|>",
                    "pad_token": "<|endoftext|>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "dataset_shard_num": 10,
                "dataset_shard_idx": 0,
                "num_epochs": 1,
                "micro_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "output_dir": output_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_bnb_8bit",
                "lr_scheduler": "cosine",
                "bf16": True,
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(output_dir) / "pytorch_model.bin").exists()