File size: 4,004 Bytes
12a2dbb
 
 
 
 
 
 
0402d19
12a2dbb
732851f
 
12a2dbb
 
 
 
 
c74f045
7de6a56
12a2dbb
 
 
 
 
 
 
732851f
12a2dbb
 
732851f
0402d19
732851f
12a2dbb
 
 
732851f
12a2dbb
732851f
12a2dbb
03e5907
12a2dbb
03e5907
12a2dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc68a6
12a2dbb
732851f
12a2dbb
03e5907
732851f
 
 
 
 
12a2dbb
 
 
 
 
 
 
6dc68a6
12a2dbb
732851f
0402d19
6dc68a6
12a2dbb
 
 
732851f
12a2dbb
9bf854e
12a2dbb
03e5907
12a2dbb
03e5907
12a2dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc68a6
12a2dbb
03e5907
12a2dbb
03e5907
12a2dbb
 
 
 
 
 
 
6dc68a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
E2E tests for lora llama
"""

import logging
import os
import unittest
from pathlib import Path

import pytest

from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from .utils import with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestPhi(unittest.TestCase):
    """
    Test case for Phi2 models
    """

    @pytest.mark.skip(reason="fixme later")
    @with_temp_dir
    def test_phi2_ft(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "microsoft/phi-2",
                "trust_remote_code": True,
                "model_type": "AutoModelForCausalLM",
                "tokenizer_type": "AutoTokenizer",
                "sequence_len": 512,
                "sample_packing": False,
                "load_in_8bit": False,
                "adapter": None,
                "val_set_size": 0.1,
                "special_tokens": {
                    "pad_token": "<|endoftext|>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "dataset_shard_num": 10,
                "dataset_shard_idx": 0,
                "num_epochs": 1,
                "micro_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "paged_adamw_8bit",
                "lr_scheduler": "cosine",
                "bf16": True,
                "flash_attention": True,
                "max_steps": 10,
                "save_steps": 10,
                "eval_steps": 10,
                "save_safetensors": True,
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "pytorch_model.bin").exists()

    @pytest.mark.skip(reason="multipack no longer supported atm")
    @with_temp_dir
    def test_ft_packed(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "microsoft/phi-2",
                "trust_remote_code": True,
                "model_type": "PhiForCausalLM",
                "tokenizer_type": "AutoTokenizer",
                "sequence_len": 512,
                "sample_packing": True,
                "load_in_8bit": False,
                "adapter": None,
                "val_set_size": 0.1,
                "special_tokens": {
                    "unk_token": "<|endoftext|>",
                    "bos_token": "<|endoftext|>",
                    "eos_token": "<|endoftext|>",
                    "pad_token": "<|endoftext|>",
                },
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "dataset_shard_num": 10,
                "dataset_shard_idx": 0,
                "num_epochs": 1,
                "micro_batch_size": 1,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_bnb_8bit",
                "lr_scheduler": "cosine",
                "bf16": True,
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "pytorch_model.bin").exists()