File size: 4,754 Bytes
fe1f4c4 7dc580b fe1f4c4 7dc580b 9105935 fe1f4c4 9105935 fe1f4c4 9105935 a10a826 9105935 2bc1a5b 9105935 a10a826 9105935 a10a826 7dc580b 04b978b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
"""Module for custom LRScheduler class"""
import math
from functools import partial
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, LRScheduler
class InterpolatingLogScheduler(LRScheduler):
"""
A scheduler that interpolates learning rates in a logarithmic fashion
"""
def __init__(self, optimizer, num_steps, min_lr, max_lr, last_epoch=-1):
"""A scheduler that interpolates learning rates in a logarithmic fashion
Args:
- optimizer: pytorch optimizer
- num_steps: int, the number of steps over which to increase from the min_lr to the max_lr
- min_lr: float, the minimum learning rate
- max_lr: float, the maximum learning rate
Usage:
fc = nn.Linear(1,1)
optimizer = optim.Adam(fc.parameters())
lr_scheduler = InterpolatingLogScheduler(optimizer, num_steps=400, min_lr=1e-6, max_lr=1e-4)
"""
self.num_steps = num_steps
self.min_lr = min_lr
self.max_lr = max_lr
self.q = (max_lr / min_lr) ** ( # pylint: disable=invalid-name
1 / (num_steps - 1)
)
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch <= 0:
lrs = [self.min_lr for base_lr in self.base_lrs]
elif self.last_epoch < self.num_steps:
lrs = [
self.min_lr * (self.q ** (self.last_epoch - 1))
for base_lr in self.base_lrs
]
else:
lrs = [self.max_lr for base_lr in self.base_lrs]
return lrs
def _get_cosine_schedule_with_quadratic_warmup_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float
):
if current_step < num_warmup_steps:
return (float(current_step) / float(max(1, num_warmup_steps))) ** 2
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
)
def get_cosine_schedule_with_quadratic_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_schedule_with_quadratic_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_cosine_schedule_with_min_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
min_lr_ratio: float
):
# Warm up
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
# Cosine learning rate decay
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
scaling = 0.5 * (1.0 + math.cos(math.pi * progress))
return (1 - min_lr_ratio) * scaling + min_lr_ratio
def get_cosine_schedule_with_min_lr(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
min_lr_ratio: float = 0.0,
):
"""
Create a learning rate schedule which has:
- linear warmup from 0 -> `max_lr` over `num_warmup_steps`
- cosine learning rate annealing from `max_lr` -> `min_lr` over `num_training_steps`
"""
lr_lambda = partial(
_get_cosine_schedule_with_min_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
min_lr_ratio=min_lr_ratio,
)
return LambdaLR(optimizer, lr_lambda)
|