File size: 9,990 Bytes
ddb86ea 55b8542 6045345 097d367 2bb0b78 6c81c61 097d367 2bb0b78 a4e1bb6 097d367 b15b19e 6c81c61 2bb0b78 b15b19e 9105935 553a86b 6045345 2bb0b78 e5bb22a 2bb0b78 e5bb22a 2bb0b78 c56b450 2bb0b78 e8cbf50 50682a3 a546ca2 9ec2077 2bb0b78 9ec2077 a546ca2 e5bb22a 9ec2077 e5bb22a a546ca2 9ec2077 ab534d7 9ec2077 ab534d7 e8cbf50 3553172 e8cbf50 2bb0b78 31b9e0c 2bb0b78 7710e81 2bb0b78 b15b19e 2bb0b78 05bd6f1 2bb0b78 31b9e0c b15b19e 2bb0b78 b15b19e 31b9e0c 2bb0b78 5247c50 2bb0b78 5a1985b 2bb0b78 c01015f 6c81c61 e30f1e3 6c81c61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
"""Module containing the Trainer class and related functions"""
import logging
import math
import os
from contextlib import contextmanager
from functools import partial
from typing import List
import numpy as np
import torch
import torch.cuda
import torch.distributed as dist
from datasets import set_caching_enabled
from torch.utils.data import DistributedSampler, RandomSampler
from axolotl.core.trainer_builder import HFCausalTrainerBuilder
from axolotl.utils.collators import DataCollatorForSeq2Seq
from axolotl.utils.dataloader import MultipackDistributedDataloader
from axolotl.utils.distributed import (
is_distributed,
is_main_process,
reduce_and_broadcast,
zero_first,
)
LOG = logging.getLogger("axolotl")
@torch.jit.script
def weighted_cross_entropy(
logits: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor
):
# Flatten the logits, labels, and weights tensors
logits = logits.view(
-1, logits.size(-1)
) # logits becomes of shape [batch_size*sequence_length, vocab_size]
labels = labels.view(-1) # labels becomes of shape [batch_size*sequence_length]
weights = weights.view(-1) # weights becomes of shape [batch_size*sequence_length]
# Compute the unweighted cross entropy loss
losses = torch.nn.functional.cross_entropy(logits, labels, reduction="none")
# Apply the weights to the losses and compute their sum
return (weights * losses).sum()
@torch.jit.script
def create_weighted_mask(labels: torch.Tensor):
# Check if the tensor is 2D. If not, unsqueeze it to make it 2D
if len(labels.shape) == 1:
labels = labels.unsqueeze(0)
weights = torch.zeros_like(labels).float()
for i in range(labels.shape[0]):
mask = labels[i] != -100
# Create a tensor to track group ids
group_ids = torch.zeros_like(labels[i]).int()
curr_group_id = 0
for j in range(1, len(labels[i])):
if mask[j] and not mask[j - 1]: # switch from masked to unmasked label
curr_group_id += 1 # start new group
group_ids[j] = (
curr_group_id if mask[j] else 0
) # assign group id if unmasked label
# Count only unmasked labels in each group
group_counts = torch.bincount(group_ids[mask])
mask_weights = torch.zeros_like(labels[i]).float()
mask_weights[mask] = 1.0 / group_counts[group_ids[mask]]
weights[i] = mask_weights
return weights.squeeze() # squeeze the output to match the input dimension
def trainer_weighted_loss(model_output, labels, shift_labels=True):
logits = (
model_output["logits"] if isinstance(model_output, dict) else model_output[0]
)
if shift_labels:
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
weights = create_weighted_mask(labels)
return weighted_cross_entropy(logits, labels, weights)
def add_position_ids(sample):
sample_len = len(sample["input_ids"])
sample["position_ids"] = torch.arange(len(sample["input_ids"]))
sample["length"] = sample_len
return sample
def add_length(sample):
sample["length"] = len(sample["input_ids"])
return sample
def drop_long_seq(sample, sequence_len=2048):
return len(sample["input_ids"]) <= sequence_len and len(sample["input_ids"]) > 0
@contextmanager
def disable_datasets_caching():
try:
set_caching_enabled(False)
yield
finally:
set_caching_enabled(True)
def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer):
drop_long = partial(drop_long_seq, sequence_len=cfg.sequence_len)
with zero_first(is_main_process()):
train_dataset = train_dataset.filter(drop_long, num_proc=cfg.dataset_processes)
if eval_dataset:
eval_dataset = eval_dataset.filter(
drop_long, num_proc=cfg.dataset_processes
)
if cfg.group_by_length:
train_dataset = train_dataset.map(
add_length, num_proc=cfg.dataset_processes
)
if cfg.sample_packing:
train_dataset = train_dataset.map(
add_position_ids, num_proc=cfg.dataset_processes
)
if cfg.eval_sample_packing is not False:
if eval_dataset:
eval_dataset = eval_dataset.map(
add_position_ids, num_proc=cfg.dataset_processes
)
# Phi doesn't want the attention_mask feature when training
if "CodeGenTokenizer" in tokenizer.__class__.__name__ or (
cfg.is_mistral_derived_model and cfg.flash_attention
):
train_dataset = train_dataset.remove_columns("attention_mask")
if eval_dataset:
eval_dataset = eval_dataset.remove_columns("attention_mask")
return train_dataset, eval_dataset
def calculate_total_num_steps(cfg, train_dataset, tokenizer):
if cfg.sample_packing:
# we have to drop anything longer then sequence len otherwise
# flash attention with position ids fails
if not cfg.total_num_tokens:
LOG.info("calculating total_num_tokens")
total_num_tokens = np.sum(
train_dataset.data.column("input_ids")
.to_pandas()
.apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda
.values
)
LOG.info(f"total_num_tokens: {total_num_tokens}")
cfg.total_num_tokens = total_num_tokens
if not cfg.total_supervised_tokens:
total_supervised_tokens = (
train_dataset.data.column("labels")
.to_pandas()
.apply(lambda x: np.sum(np.array(x) != -100))
.sum()
)
LOG.info(f"`total_supervised_tokens: {total_supervised_tokens}`")
cfg.total_supervised_tokens = total_supervised_tokens
if cfg.sample_packing_eff_est:
total_num_steps = (
# match count to len est in dataloader
(
math.floor(
0.99
* cfg.total_num_tokens
/ cfg.sample_packing_eff_est
/ cfg.sequence_len
// cfg.batch_size
// int(os.environ.get("WORLD_SIZE", 1))
)
- 1
)
* cfg.num_epochs
)
LOG.info(
f"total_num_tokens: {cfg.total_num_tokens}, total_num_steps: {total_num_steps}"
)
else:
if cfg.world_size > 1 and is_distributed():
sampler = DistributedSampler(
train_dataset,
num_replicas=cfg.world_size,
rank=dist.get_rank(),
seed=cfg.seed or 42,
)
else:
sampler = RandomSampler(train_dataset)
data_loader = MultipackDistributedDataloader(
train_dataset,
batch_size=cfg.micro_batch_size,
seq_max_length=cfg.max_packed_sequence_len or cfg.sequence_len,
collate_fn=DataCollatorForSeq2Seq(
tokenizer,
return_tensors="pt",
padding="longest",
),
sampler=sampler,
packing_efficiency_estimate=cfg.sample_packing_eff_est,
sample_packing_seq_len_multiplier=cfg.micro_batch_size,
device_count=int(os.environ.get("WORLD_SIZE", 1)),
num_epochs=cfg.num_epochs,
)
data_loader_len = data_loader.len_w_stats()
actual_eff = data_loader.efficiency()
LOG.info(f"data_loader_len: {data_loader_len}")
# FIXME: is there a bug here somewhere? the total num steps depends
# on the agreed on value for sample_packing_eff_est
total_num_steps = int(math.floor(data_loader_len * cfg.num_epochs))
def calc_sample_packing_eff_est(estimates: List[float]):
LOG.info(f"sample_packing_eff_est across ranks: {repr(estimates)}")
return max(estimates)
sample_packing_actual_eff_all = reduce_and_broadcast(
lambda: actual_eff,
calc_sample_packing_eff_est,
)
sample_packing_eff_est = (
math.ceil(sample_packing_actual_eff_all * 100.0) / 100.0
)
cfg.sample_packing_eff_est = sample_packing_eff_est
LOG.info(f"sample_packing_eff_est: {cfg.sample_packing_eff_est}")
else:
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
LOG.info(f"total_num_steps: {total_num_steps}")
return total_num_steps
def setup_fsdp_envs(cfg):
os.environ["ACCELERATE_USE_FSDP"] = "true"
if cfg.fsdp_config.fsdp_offload_params:
os.environ["FSDP_OFFLOAD_PARAMS"] = "true"
if cfg.fsdp_config.fsdp_sync_module_states:
os.environ["FSDP_SYNC_MODULE_STATES"] = "true"
if cfg.fsdp_config.fsdp_state_dict_type:
os.environ["FSDP_STATE_DICT_TYPE"] = cfg.fsdp_config.fsdp_state_dict_type
if cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap:
os.environ[
"FSDP_TRANSFORMER_CLS_TO_WRAP"
] = cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps):
if cfg.fsdp:
setup_fsdp_envs(cfg)
elif cfg.deepspeed:
os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"
trainer_builder = HFCausalTrainerBuilder(cfg, model, tokenizer)
trainer_builder.train_dataset = train_dataset
trainer_builder.eval_dataset = eval_dataset
return trainer_builder.build(total_num_steps)
|