File size: 26,038 Bytes
6c81c61 05bd6f1 6c81c61 05bd6f1 6c81c61 05bd6f1 6c81c61 05bd6f1 6c81c61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
"""
Builder for the training args and trainer
"""
import abc
import importlib
import logging
import math
import os
import sys
from abc import abstractmethod
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Optional, Union
import torch
import transformers
from datasets import Dataset
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, DistributedSampler, SequentialSampler
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
from transformers.trainer_pt_utils import SequentialDistributedSampler
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
from axolotl.utils.callbacks import (
EvalFirstStepCallback,
GPUStatsCallback,
SaveAxolotlConfigtoWandBCallback,
SaveBetterTransformerModelCallback,
bench_eval_callback_factory,
log_prediction_callback_factory,
)
from axolotl.utils.collators import DataCollatorForSeq2Seq
from axolotl.utils.dataloader import MultipackDistributedDataloader
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
try:
import torch._dynamo # pylint: disable=ungrouped-imports
except ImportError:
pass
LOG = logging.getLogger("axolotl.core.trainer_builder")
@dataclass
class AxolotlTrainingArguments(TrainingArguments):
"""
Extend the base TrainingArguments for axolotl helpers
"""
lr_quadratic_warmup: bool = field(
default=False,
metadata={"help": "Use quadratic warmup for cosine scheduling."},
)
sample_packing: bool = field(
default=False,
metadata={"help": "Use sample packing for efficient training."},
)
eval_sample_packing: Optional[bool] = field(
default=None,
metadata={"help": "Use sample packing for efficient evals."},
)
sample_packing_efficiency: float = field(
default=1.0,
metadata={"help": "Sample packing efficiency for calculating batch length."},
)
max_seq_length: int = field(
default=2048,
metadata={"help": "The maximum sequence length the model can handle"},
)
sample_packing_seq_len_multiplier: int = field(
default=1,
metadata={"help": "the multiplier for the max len for packed sequences"},
)
relora_steps: Optional[int] = field(
default=None,
metadata={"help": "how often to reset for ReLoRA"},
)
relora_warmup_steps: Optional[int] = field(
default=None,
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
)
bench_split: Optional[str] = field(
default="eval", metadata={"help": "The benchmark split to run on"}
)
bench_dataset: Optional[str] = field(
default="pharaouk/dharma-1/dharma_1_mini.json",
metadata={
"help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file"
},
)
do_bench_eval: Optional[bool] = field(
default=False, metadata={"help": "Whether to run the Benchmark evaluation."}
)
max_bench_samples: Optional[int] = field(
default=None,
metadata={
"help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset."
},
)
bench_source_max_len: int = field(
default=2048, metadata={"help": "Maximum source sequence length for bench."}
)
class AxolotlTrainer(Trainer):
"""
Extend the base Trainer for axolotl helpers
"""
args = None # type: AxolotlTrainingArguments
def __init__(self, *args, num_epochs=1, bench_data_collator=None, **kwargs):
self.num_epochs = num_epochs
self.bench_data_collator = bench_data_collator
super().__init__(*args, **kwargs)
def create_scheduler(
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
):
"""
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
passed as an argument.
Args:
num_training_steps (int): The number of training steps to do.
optimizer (torch.optim.Optimizer): The training optimizer
"""
# fmt: off
if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition
# fmt: on
if (
self.args.lr_scheduler_type == "cosine"
and self.args.lr_quadratic_warmup is True
):
self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
optimizer,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
else:
return super().create_scheduler(num_training_steps, optimizer)
return self.lr_scheduler
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.args.world_size > 1 and self.args.sample_packing:
return DistributedSampler(
self.train_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=self.args.seed,
)
return super()._get_train_sampler()
def _get_eval_sampler(
self, eval_dataset: Dataset
) -> Optional[torch.utils.data.Sampler]:
if (
self.args.world_size > 1
and self.args.sample_packing
and self.args.eval_sample_packing is not False
):
return SequentialDistributedSampler(
eval_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
batch_size=self.args.per_device_eval_batch_size,
)
return super()._get_eval_sampler(eval_dataset)
def get_train_dataloader(self) -> Union[DataLoader, MultipackDistributedDataloader]:
if self.args.sample_packing:
train_sampler = self._get_train_sampler()
return self.accelerator.prepare(
MultipackDistributedDataloader(
self.train_dataset,
batch_size=self._train_batch_size,
seq_max_length=self.args.max_seq_length,
collate_fn=self.data_collator,
sampler=train_sampler,
packing_efficiency_estimate=self.args.sample_packing_efficiency,
sample_packing_seq_len_multiplier=self.args.sample_packing_seq_len_multiplier,
device_count=int(os.environ.get("WORLD_SIZE", 1)),
num_epochs=self.num_epochs,
)
)
return super().get_train_dataloader()
def get_eval_dataloader(
self, eval_dataset: Optional[Dataset] = None
) -> Union[DataLoader, MultipackDistributedDataloader]:
if self.args.sample_packing and self.args.eval_sample_packing is not False:
eval_dataset = (
eval_dataset if eval_dataset is not None else self.eval_dataset
)
eval_sampler = self._get_eval_sampler(eval_dataset)
return self.accelerator.prepare(
MultipackDistributedDataloader(
eval_dataset,
batch_size=self.args.eval_batch_size,
seq_max_length=self.args.max_seq_length,
collate_fn=self.data_collator,
sampler=eval_sampler,
packing_efficiency_estimate=self.args.sample_packing_efficiency,
sample_packing_seq_len_multiplier=self.args.eval_batch_size,
device_count=int(os.environ.get("WORLD_SIZE", 1)),
num_epochs=self.num_epochs,
)
)
return super().get_eval_dataloader(eval_dataset)
def _get_bench_sampler(
self, bench_dataset: Dataset
) -> Optional[torch.utils.data.Sampler]:
if self.args.world_size <= 1:
return SequentialSampler(bench_dataset)
return None
def get_bench_dataloader(
self,
bench_dataset: Dataset,
) -> Union[DataLoader, MultipackDistributedDataloader]:
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": self.bench_data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
dataloader_params["drop_last"] = self.args.dataloader_drop_last
return DataLoader(bench_dataset, **dataloader_params)
# return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params))
def compute_loss(self, model, inputs, return_outputs=False):
# use one's weighted cross entropy loss calc
# if self.args.sample_packing:
# labels = inputs.pop("labels")
# outputs = model(**inputs)
# loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
# return (loss, outputs) if return_outputs else loss
return super().compute_loss(model, inputs, return_outputs=return_outputs)
class OneCycleLRSchedulerTrainer(AxolotlTrainer):
"""
Trainer subclass that uses the OneCycleLR scheduler
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lr_scheduler = None
def create_scheduler(
self,
num_training_steps: int,
optimizer: Optional[torch.optim.Optimizer] = None,
):
optimizer = self.optimizer if optimizer is None else optimizer
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
pct_start = num_warmup_steps / num_training_steps
self.lr_scheduler = OneCycleLR(
optimizer,
max_lr=self.args.learning_rate,
total_steps=num_training_steps,
pct_start=pct_start,
div_factor=6,
)
return self.lr_scheduler
class ReLoRATrainer(AxolotlTrainer):
"""
Trainer subclass that uses the OneCycleLR scheduler
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lr_scheduler = None
def create_scheduler(
self,
num_training_steps: int,
optimizer: Optional[torch.optim.Optimizer] = None,
):
optimizer = self.optimizer if optimizer is None else optimizer
lr_scheduler = super().create_scheduler(num_training_steps, optimizer)
if self.args.relora_steps:
warmup_steps = (
self.args.relora_warmup_steps if self.args.relora_warmup_steps else 10
)
self.lr_scheduler = ReLoRAScheduler(
optimizer,
lr_scheduler,
self.args.relora_steps,
warmup_steps,
)
else:
self.lr_scheduler = lr_scheduler
return self.lr_scheduler
class TrainerBuilderBase(abc.ABC):
"""
Base class for trainer builder
"""
_train_dataset = None
_eval_dataset = None
def __init__(self, cfg, model, tokenizer):
self.cfg = cfg
self.model = model
self.tokenizer = tokenizer
@property
def train_dataset(self):
return self._train_dataset
@train_dataset.setter
def train_dataset(self, dataset):
self._train_dataset = dataset
@property
def eval_dataset(self):
return self._eval_dataset
@eval_dataset.setter
def eval_dataset(self, dataset):
self._eval_dataset = dataset
@abstractmethod
def build(self, total_num_steps):
pass
@abstractmethod
def get_callbacks(self):
pass
@abstractmethod
def get_post_trainer_create_callbacks(self, trainer):
"""
Callbacks added after the trainer is created, usually b/c these need access to the trainer
"""
class HFCausalTrainerBuilder(TrainerBuilderBase):
"""
Build the HuggingFace training args/trainer for Causal models
"""
def hook_pre_create_training_args(self, training_arguments_kwargs):
# TODO
return training_arguments_kwargs
def hook_post_create_training_args(self, training_arguments):
# TODO
return training_arguments
def hook_pre_create_trainer(self, trainer_kwargs, trainer_cls):
# TODO
return trainer_kwargs, trainer_cls
def hook_post_create_trainer(self, trainer):
# TODO
return trainer
def get_callbacks(self):
callbacks = []
callbacks.append(GPUStatsCallback(self.cfg))
callbacks.append(EvalFirstStepCallback)
if self.cfg.relora_steps:
callbacks.append(ReLoRACallback(self.cfg))
if (
hasattr(self.model, "use_bettertransformer")
and self.model.use_bettertransformer is True
):
callbacks.append(SaveBetterTransformerModelCallback)
if self.cfg.use_wandb:
callbacks.append(
SaveAxolotlConfigtoWandBCallback(self.cfg.axolotl_config_path)
)
return callbacks
def get_post_trainer_create_callbacks(self, trainer):
callbacks = []
if self.cfg.use_wandb and self.cfg.eval_table_size > 0:
LogPredictionCallback = log_prediction_callback_factory(
trainer, self.tokenizer
)
callbacks.append(LogPredictionCallback(self.cfg))
if self.cfg.do_bench_eval:
callbacks.append(bench_eval_callback_factory(trainer, self.tokenizer))
if self.cfg.early_stopping_patience:
early_stop_cb = EarlyStoppingCallback(
self.cfg.early_stopping_patience,
)
callbacks.append(early_stop_cb)
return callbacks
def _get_trainer_cls(self):
if self.cfg.lr_scheduler == "one_cycle" and (
self.cfg.fsdp or self.cfg.adapter == "qlora"
):
return OneCycleLRSchedulerTrainer
if self.cfg.relora_steps:
return ReLoRATrainer
return AxolotlTrainer
def build(self, total_num_steps):
warmup_steps = (
self.cfg.warmup_steps
if self.cfg.warmup_steps is not None
else min(int(0.03 * total_num_steps), 100)
)
logging_steps = (
self.cfg.logging_steps
if self.cfg.logging_steps is not None
else max(min(int(0.005 * total_num_steps), 10), 1)
)
training_arguments_kwargs = {}
if self.cfg.bf16 == "full":
training_arguments_kwargs["bf16_full_eval"] = True
else:
training_arguments_kwargs["bf16"] = self.cfg.bf16
training_arguments_kwargs["fp16"] = (
self.cfg.fp16 and not self.cfg.bf16
) or False
training_arguments_kwargs["tf32"] = self.cfg.tf32
training_arguments_kwargs["warmup_steps"] = warmup_steps
training_arguments_kwargs["logging_steps"] = logging_steps
if self.cfg.seed:
training_arguments_kwargs["seed"] = self.cfg.seed
if self.cfg.gradient_checkpointing:
training_arguments_kwargs[
"gradient_checkpointing"
] = self.cfg.gradient_checkpointing
if self.cfg.fsdp:
training_arguments_kwargs["fsdp"] = self.cfg.fsdp
if self.cfg.fsdp_config:
training_arguments_kwargs["fsdp_config"] = dict(self.cfg.fsdp_config)
# deepspeed
if self.cfg.deepspeed:
training_arguments_kwargs["deepspeed"] = self.cfg.deepspeed
if self.cfg.lr_quadratic_warmup is not None:
training_arguments_kwargs[
"lr_quadratic_warmup"
] = self.cfg.lr_quadratic_warmup
if self.cfg.adam_beta1:
training_arguments_kwargs["adam_beta1"] = self.cfg.adam_beta1
if self.cfg.adam_beta2:
training_arguments_kwargs["adam_beta2"] = self.cfg.adam_beta2
if self.cfg.adam_epsilon:
training_arguments_kwargs["adam_epsilon"] = self.cfg.adam_epsilon
if self.cfg.max_grad_norm:
training_arguments_kwargs["max_grad_norm"] = self.cfg.max_grad_norm
if self.cfg.hub_model_id:
training_arguments_kwargs["hub_model_id"] = self.cfg.hub_model_id
training_arguments_kwargs["push_to_hub"] = True
training_arguments_kwargs["hub_private_repo"] = True
if self.cfg.hub_strategy:
training_arguments_kwargs["hub_strategy"] = self.cfg.hub_strategy
if self.cfg.save_safetensors:
training_arguments_kwargs["save_safetensors"] = self.cfg.save_safetensors
if self.cfg.sample_packing_eff_est:
training_arguments_kwargs[
"sample_packing_efficiency"
] = self.cfg.sample_packing_eff_est
if self.cfg.eval_steps:
training_arguments_kwargs["evaluation_strategy"] = "steps"
training_arguments_kwargs["eval_steps"] = self.cfg.eval_steps
elif self.cfg.evaluation_strategy:
training_arguments_kwargs[
"evaluation_strategy"
] = self.cfg.evaluation_strategy
elif self.cfg.val_set_size == 0:
# no eval set, so don't eval
training_arguments_kwargs["evaluation_strategy"] = "no"
else:
# we have an eval set, but no steps defined, default to use epoch
training_arguments_kwargs["evaluation_strategy"] = "epoch"
if self.cfg.save_steps:
training_arguments_kwargs["save_strategy"] = "steps"
training_arguments_kwargs["save_steps"] = self.cfg.save_steps
elif self.cfg.save_strategy:
training_arguments_kwargs["save_strategy"] = self.cfg.save_strategy
else:
# default to saving each epoch if not defined
training_arguments_kwargs["save_strategy"] = "epoch"
if self.cfg.do_bench_eval:
training_arguments_kwargs["do_bench_eval"] = self.cfg.do_bench_eval
if self.cfg.bench_dataset:
training_arguments_kwargs["bench_dataset"] = self.cfg.bench_dataset
if self.cfg.metric_for_best_model:
training_arguments_kwargs[
"metric_for_best_model"
] = self.cfg.metric_for_best_model
if self.cfg.greater_is_better:
training_arguments_kwargs["greater_is_better"] = self.cfg.greater_is_better
if self.cfg.torch_compile:
if torch.__version__ < "2.1.0": # pylint: disable=protected-access
LOG.warning("torch>=2.1.0 required for torch_compile to work properly")
elif torch._dynamo: # pylint: disable=protected-access
torch._dynamo.config.suppress_errors = ( # pylint: disable=protected-access
True
)
training_arguments_kwargs["torch_compile"] = self.cfg.torch_compile
if self.cfg.torch_compile_backend:
training_arguments_kwargs[
"torch_compile_backend"
] = self.cfg.torch_compile_backend
# DDP Config
if self.cfg.ddp_timeout:
training_arguments_kwargs["ddp_timeout"] = self.cfg.ddp_timeout
# see https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
if self.cfg.ddp_bucket_cap_mb:
training_arguments_kwargs["ddp_bucket_cap_mb"] = self.cfg.ddp_bucket_cap_mb
if self.cfg.ddp_broadcast_buffers is not None:
training_arguments_kwargs[
"ddp_broadcast_buffers"
] = self.cfg.ddp_broadcast_buffers
# these are all the "standard" kwargs that are def used
training_arguments_kwargs["max_steps"] = (
total_num_steps if self.cfg.max_steps else -1
)
training_arguments_kwargs["max_seq_length"] = self.cfg.sequence_len
training_arguments_kwargs[
"per_device_train_batch_size"
] = self.cfg.micro_batch_size
training_arguments_kwargs[
"per_device_eval_batch_size"
] = self.cfg.eval_batch_size
training_arguments_kwargs[
"gradient_accumulation_steps"
] = self.cfg.gradient_accumulation_steps
training_arguments_kwargs[
"eval_accumulation_steps"
] = self.cfg.gradient_accumulation_steps
training_arguments_kwargs["num_train_epochs"] = self.cfg.num_epochs
training_arguments_kwargs["learning_rate"] = self.cfg.learning_rate
training_arguments_kwargs["output_dir"] = self.cfg.output_dir
training_arguments_kwargs["save_total_limit"] = (
self.cfg.save_total_limit if self.cfg.save_total_limit else 4
)
training_arguments_kwargs["load_best_model_at_end"] = (
(
self.cfg.load_best_model_at_end is not False
or self.cfg.early_stopping_patience
)
and self.cfg.val_set_size > 0
and self.cfg.save_steps
and self.cfg.eval_steps
and self.cfg.save_steps % self.cfg.eval_steps == 0
) or False
training_arguments_kwargs["ddp_find_unused_parameters"] = (
False if self.cfg.ddp else None
)
training_arguments_kwargs["group_by_length"] = self.cfg.group_by_length
training_arguments_kwargs["report_to"] = "wandb" if self.cfg.use_wandb else None
training_arguments_kwargs["run_name"] = (
self.cfg.wandb_run_id if self.cfg.use_wandb else None
)
training_arguments_kwargs["optim"] = (
self.cfg.optimizer if self.cfg.optimizer else "adamw_hf"
)
training_arguments_kwargs["lr_scheduler_type"] = (
self.cfg.lr_scheduler
if self.cfg.lr_scheduler
and self.cfg.lr_scheduler not in ("one_cycle", "log_sweep")
else "cosine"
)
training_arguments_kwargs["weight_decay"] = (
self.cfg.weight_decay if self.cfg.weight_decay is not None else 0.0
)
training_arguments_kwargs["sample_packing"] = (
self.cfg.sample_packing if self.cfg.sample_packing else False
)
training_arguments_kwargs["eval_sample_packing"] = (
self.cfg.sample_packing if self.cfg.sample_packing else False
)
training_arguments_kwargs[
"sample_packing_seq_len_multiplier"
] = self.cfg.micro_batch_size
training_arguments_kwargs["relora_steps"] = self.cfg.relora_steps
training_arguments_kwargs["relora_warmup_steps"] = self.cfg.relora_warmup_steps
training_arguments_kwargs = self.hook_pre_create_training_args(
training_arguments_kwargs
)
training_args = (
AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
**training_arguments_kwargs,
)
)
training_args = self.hook_post_create_training_args(training_args)
trainer_kwargs = {}
if self.cfg.optimizer == "adamw_anyprecision":
if Path(self.cfg.torchdistx_path).exists():
sys.path.append(self.cfg.torchdistx_path)
importlib.import_module("torchdistx")
data_collator_kwargs = {
"padding": True, # True/"longest" is the default
}
if self.cfg.pad_to_sequence_len:
data_collator_kwargs["pad_to_multiple_of"] = 64 * math.ceil(
self.cfg.sequence_len / 64
)
else:
# A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
data_collator_kwargs["pad_to_multiple_of"] = 64
if self.cfg.is_llama_derived_model and self.cfg.landmark_attention:
from axolotl.monkeypatch.llama_landmark_attn import (
add_mem_tokens,
get_mem_id,
set_model_mem_id,
)
set_model_mem_id(self.model, self.tokenizer)
LOG.info("Adding landmark attention tokens to dataset")
for dataset in [self.train_dataset, self.eval_dataset]:
dataset = dataset.map(
partial(
add_mem_tokens, mem_freq=50, mem_id=get_mem_id(self.tokenizer)
),
batched=False,
num_proc=32,
)
trainer_cls = self._get_trainer_cls()
trainer_kwargs, trainer_cls = self.hook_pre_create_trainer(
trainer_kwargs, trainer_cls
)
trainer = trainer_cls(
model=self.model,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
args=training_args,
data_collator=DataCollatorForSeq2Seq(
self.tokenizer,
return_tensors="pt",
**data_collator_kwargs,
),
bench_data_collator=transformers.DataCollatorForSeq2Seq(
self.tokenizer,
return_tensors="pt",
**data_collator_kwargs,
),
callbacks=self.get_callbacks(),
num_epochs=self.cfg.num_epochs,
**trainer_kwargs,
)
trainer = self.hook_post_create_trainer(trainer)
for callback in self.get_post_trainer_create_callbacks(trainer):
trainer.add_callback(callback)
return trainer
|