File size: 3,521 Bytes
bcc78d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
E2E tests for mixtral
"""

import logging
import os
import unittest
from pathlib import Path

from transformers.utils import is_torch_bf16_gpu_available

from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault

from .utils import with_temp_dir

LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"


class TestMixtral(unittest.TestCase):
    """
    Test case for Llama models using LoRA
    """

    @with_temp_dir
    def test_qlora(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "hf-internal-testing/Mixtral-tiny",
                "tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
                "flash_attention": True,
                "sequence_len": 1024,
                "load_in_4bit": True,
                "adapter": "qlora",
                "lora_r": 16,
                "lora_alpha": 32,
                "lora_dropout": 0.1,
                "lora_target_linear": True,
                "val_set_size": 0.1,
                "special_tokens": {},
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_bnb_8bit",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "eval_steps": 10,
            }
        )
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "adapter_model.bin").exists()

    @with_temp_dir
    def test_ft(self, temp_dir):
        # pylint: disable=duplicate-code
        cfg = DictDefault(
            {
                "base_model": "hf-internal-testing/Mixtral-tiny",
                "tokenizer_config": "mistralai/Mixtral-8x7B-v0.1",
                "flash_attention": True,
                "sequence_len": 1024,
                "val_set_size": 0.1,
                "special_tokens": {},
                "datasets": [
                    {
                        "path": "mhenrichsen/alpaca_2k_test",
                        "type": "alpaca",
                    },
                ],
                "num_epochs": 2,
                "micro_batch_size": 2,
                "gradient_accumulation_steps": 1,
                "output_dir": temp_dir,
                "learning_rate": 0.00001,
                "optimizer": "adamw_bnb_8bit",
                "lr_scheduler": "cosine",
                "max_steps": 20,
                "save_steps": 10,
                "eval_steps": 10,
            }
        )
        if is_torch_bf16_gpu_available():
            cfg.bf16 = True
        else:
            cfg.fp16 = True
        normalize_config(cfg)
        cli_args = TrainerCliArgs()
        dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

        train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
        assert (Path(temp_dir) / "pytorch_model.bin").exists()