broadfield-dev commited on
Commit
3f97053
Β·
verified Β·
1 Parent(s): 42ffcec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1173 -1
app.py CHANGED
@@ -1,2 +1,1174 @@
 
 
 
 
 
 
1
  import os
2
- os.system("python vibevoice/demo/gradio_demo.py --model_path microsoft/VibeVoice-1.5B --share")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ VibeVoice Gradio Demo - High-Quality Dialogue Generation Interface with Streaming Support
3
+ """
4
+
5
+ import argparse
6
+ import json
7
  import os
8
+ import sys
9
+ import tempfile
10
+ import time
11
+ from pathlib import Path
12
+ from typing import List, Dict, Any, Iterator
13
+ from datetime import datetime
14
+ import threading
15
+ import numpy as np
16
+ import gradio as gr
17
+ import librosa
18
+ import soundfile as sf
19
+ import torch
20
+ import os
21
+ import traceback
22
+
23
+ from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
24
+ from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
25
+ from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
26
+ from vibevoice.modular.streamer import AudioStreamer
27
+ from transformers.utils import logging
28
+ from transformers import set_seed
29
+
30
+ logging.set_verbosity_info()
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ class VibeVoiceDemo:
35
+ def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
36
+ """Initialize the VibeVoice demo with model loading."""
37
+ self.model_path = model_path
38
+ self.device = device
39
+ self.inference_steps = inference_steps
40
+ self.is_generating = False # Track generation state
41
+ self.stop_generation = False # Flag to stop generation
42
+ self.current_streamer = None # Track current audio streamer
43
+ self.load_model()
44
+ self.setup_voice_presets()
45
+ self.load_example_scripts() # Load example scripts
46
+
47
+ def load_model(self):
48
+ """Load the VibeVoice model and processor."""
49
+ print(f"Loading processor & model from {self.model_path}")
50
+
51
+ # Load processor
52
+ self.processor = VibeVoiceProcessor.from_pretrained(
53
+ self.model_path,
54
+ )
55
+
56
+ # Load model
57
+ self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
58
+ self.model_path,
59
+ torch_dtype=torch.bfloat16,
60
+ device_map='cuda',
61
+ attn_implementation="flash_attention_2",
62
+ )
63
+ self.model.eval()
64
+
65
+ # Use SDE solver by default
66
+ self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
67
+ self.model.model.noise_scheduler.config,
68
+ algorithm_type='sde-dpmsolver++',
69
+ beta_schedule='squaredcos_cap_v2'
70
+ )
71
+ self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
72
+
73
+ if hasattr(self.model.model, 'language_model'):
74
+ print(f"Language model attention: {self.model.model.language_model.config._attn_implementation}")
75
+
76
+ def setup_voice_presets(self):
77
+ """Setup voice presets by scanning the voices directory."""
78
+ voices_dir = os.path.join(os.path.dirname(__file__), "voices")
79
+
80
+ # Check if voices directory exists
81
+ if not os.path.exists(voices_dir):
82
+ print(f"Warning: Voices directory not found at {voices_dir}")
83
+ self.voice_presets = {}
84
+ self.available_voices = {}
85
+ return
86
+
87
+ # Scan for all WAV files in the voices directory
88
+ self.voice_presets = {}
89
+
90
+ # Get all .wav files in the voices directory
91
+ wav_files = [f for f in os.listdir(voices_dir)
92
+ if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')) and os.path.isfile(os.path.join(voices_dir, f))]
93
+
94
+ # Create dictionary with filename (without extension) as key
95
+ for wav_file in wav_files:
96
+ # Remove .wav extension to get the name
97
+ name = os.path.splitext(wav_file)[0]
98
+ # Create full path
99
+ full_path = os.path.join(voices_dir, wav_file)
100
+ self.voice_presets[name] = full_path
101
+
102
+ # Sort the voice presets alphabetically by name for better UI
103
+ self.voice_presets = dict(sorted(self.voice_presets.items()))
104
+
105
+ # Filter out voices that don't exist (this is now redundant but kept for safety)
106
+ self.available_voices = {
107
+ name: path for name, path in self.voice_presets.items()
108
+ if os.path.exists(path)
109
+ }
110
+
111
+ if not self.available_voices:
112
+ raise gr.Error("No voice presets found. Please add .wav files to the demo/voices directory.")
113
+
114
+ print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
115
+ print(f"Available voices: {', '.join(self.available_voices.keys())}")
116
+
117
+ def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
118
+ """Read and preprocess audio file."""
119
+ try:
120
+ wav, sr = sf.read(audio_path)
121
+ if len(wav.shape) > 1:
122
+ wav = np.mean(wav, axis=1)
123
+ if sr != target_sr:
124
+ wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
125
+ return wav
126
+ except Exception as e:
127
+ print(f"Error reading audio {audio_path}: {e}")
128
+ return np.array([])
129
+
130
+ def generate_podcast_streaming(self,
131
+ num_speakers: int,
132
+ script: str,
133
+ speaker_1: str = None,
134
+ speaker_2: str = None,
135
+ speaker_3: str = None,
136
+ speaker_4: str = None,
137
+ cfg_scale: float = 1.3) -> Iterator[tuple]:
138
+ try:
139
+ # Reset stop flag and set generating state
140
+ self.stop_generation = False
141
+ self.is_generating = True
142
+
143
+ # Validate inputs
144
+ if not script.strip():
145
+ self.is_generating = False
146
+ raise gr.Error("Error: Please provide a script.")
147
+
148
+ if num_speakers < 1 or num_speakers > 4:
149
+ self.is_generating = False
150
+ raise gr.Error("Error: Number of speakers must be between 1 and 4.")
151
+
152
+ # Collect selected speakers
153
+ selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
154
+
155
+ # Validate speaker selections
156
+ for i, speaker in enumerate(selected_speakers):
157
+ if not speaker or speaker not in self.available_voices:
158
+ self.is_generating = False
159
+ raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
160
+
161
+ # Build initial log
162
+ log = f"πŸŽ™οΈ Generating podcast with {num_speakers} speakers\n"
163
+ log += f"πŸ“Š Parameters: CFG Scale={cfg_scale}, Inference Steps={self.inference_steps}\n"
164
+ log += f"🎭 Speakers: {', '.join(selected_speakers)}\n"
165
+
166
+ # Check for stop signal
167
+ if self.stop_generation:
168
+ self.is_generating = False
169
+ yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
170
+ return
171
+
172
+ # Load voice samples
173
+ voice_samples = []
174
+ for speaker_name in selected_speakers:
175
+ audio_path = self.available_voices[speaker_name]
176
+ audio_data = self.read_audio(audio_path)
177
+ if len(audio_data) == 0:
178
+ self.is_generating = False
179
+ raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
180
+ voice_samples.append(audio_data)
181
+
182
+ # log += f"βœ… Loaded {len(voice_samples)} voice samples\n"
183
+
184
+ # Check for stop signal
185
+ if self.stop_generation:
186
+ self.is_generating = False
187
+ yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
188
+ return
189
+
190
+ # Parse script to assign speaker ID's
191
+ lines = script.strip().split('\n')
192
+ formatted_script_lines = []
193
+
194
+ for line in lines:
195
+ line = line.strip()
196
+ if not line:
197
+ continue
198
+
199
+ # Check if line already has speaker format
200
+ if line.startswith('Speaker ') and ':' in line:
201
+ formatted_script_lines.append(line)
202
+ else:
203
+ # Auto-assign to speakers in rotation
204
+ speaker_id = len(formatted_script_lines) % num_speakers
205
+ formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
206
+
207
+ formatted_script = '\n'.join(formatted_script_lines)
208
+ log += f"πŸ“ Formatted script with {len(formatted_script_lines)} turns\n\n"
209
+ log += "πŸ”„ Processing with VibeVoice (streaming mode)...\n"
210
+
211
+ # Check for stop signal before processing
212
+ if self.stop_generation:
213
+ self.is_generating = False
214
+ yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
215
+ return
216
+
217
+ start_time = time.time()
218
+
219
+ inputs = self.processor(
220
+ text=[formatted_script],
221
+ voice_samples=[voice_samples],
222
+ padding=True,
223
+ return_tensors="pt",
224
+ return_attention_mask=True,
225
+ )
226
+
227
+ # Create audio streamer
228
+ audio_streamer = AudioStreamer(
229
+ batch_size=1,
230
+ stop_signal=None,
231
+ timeout=None
232
+ )
233
+
234
+ # Store current streamer for potential stopping
235
+ self.current_streamer = audio_streamer
236
+
237
+ # Start generation in a separate thread
238
+ generation_thread = threading.Thread(
239
+ target=self._generate_with_streamer,
240
+ args=(inputs, cfg_scale, audio_streamer)
241
+ )
242
+ generation_thread.start()
243
+
244
+ # Wait for generation to actually start producing audio
245
+ time.sleep(1) # Reduced from 3 to 1 second
246
+
247
+ # Check for stop signal after thread start
248
+ if self.stop_generation:
249
+ audio_streamer.end()
250
+ generation_thread.join(timeout=5.0) # Wait up to 5 seconds for thread to finish
251
+ self.is_generating = False
252
+ yield None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
253
+ return
254
+
255
+ # Collect audio chunks as they arrive
256
+ sample_rate = 24000
257
+ all_audio_chunks = [] # For final statistics
258
+ pending_chunks = [] # Buffer for accumulating small chunks
259
+ chunk_count = 0
260
+ last_yield_time = time.time()
261
+ min_yield_interval = 15 # Yield every 15 seconds
262
+ min_chunk_size = sample_rate * 30 # At least 2 seconds of audio
263
+
264
+ # Get the stream for the first (and only) sample
265
+ audio_stream = audio_streamer.get_stream(0)
266
+
267
+ has_yielded_audio = False
268
+ has_received_chunks = False # Track if we received any chunks at all
269
+
270
+ for audio_chunk in audio_stream:
271
+ # Check for stop signal in the streaming loop
272
+ if self.stop_generation:
273
+ audio_streamer.end()
274
+ break
275
+
276
+ chunk_count += 1
277
+ has_received_chunks = True # Mark that we received at least one chunk
278
+
279
+ # Convert tensor to numpy
280
+ if torch.is_tensor(audio_chunk):
281
+ # Convert bfloat16 to float32 first, then to numpy
282
+ if audio_chunk.dtype == torch.bfloat16:
283
+ audio_chunk = audio_chunk.float()
284
+ audio_np = audio_chunk.cpu().numpy().astype(np.float32)
285
+ else:
286
+ audio_np = np.array(audio_chunk, dtype=np.float32)
287
+
288
+ # Ensure audio is 1D and properly normalized
289
+ if len(audio_np.shape) > 1:
290
+ audio_np = audio_np.squeeze()
291
+
292
+ # Convert to 16-bit for Gradio
293
+ audio_16bit = convert_to_16_bit_wav(audio_np)
294
+
295
+ # Store for final statistics
296
+ all_audio_chunks.append(audio_16bit)
297
+
298
+ # Add to pending chunks buffer
299
+ pending_chunks.append(audio_16bit)
300
+
301
+ # Calculate pending audio size
302
+ pending_audio_size = sum(len(chunk) for chunk in pending_chunks)
303
+ current_time = time.time()
304
+ time_since_last_yield = current_time - last_yield_time
305
+
306
+ # Decide whether to yield
307
+ should_yield = False
308
+ if not has_yielded_audio and pending_audio_size >= min_chunk_size:
309
+ # First yield: wait for minimum chunk size
310
+ should_yield = True
311
+ has_yielded_audio = True
312
+ elif has_yielded_audio and (pending_audio_size >= min_chunk_size or time_since_last_yield >= min_yield_interval):
313
+ # Subsequent yields: either enough audio or enough time has passed
314
+ should_yield = True
315
+
316
+ if should_yield and pending_chunks:
317
+ # Concatenate and yield only the new audio chunks
318
+ new_audio = np.concatenate(pending_chunks)
319
+ new_duration = len(new_audio) / sample_rate
320
+ total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
321
+
322
+ log_update = log + f"🎡 Streaming: {total_duration:.1f}s generated (chunk {chunk_count})\n"
323
+
324
+ # Yield streaming audio chunk and keep complete_audio as None during streaming
325
+ yield (sample_rate, new_audio), None, log_update, gr.update(visible=True)
326
+
327
+ # Clear pending chunks after yielding
328
+ pending_chunks = []
329
+ last_yield_time = current_time
330
+
331
+ # Yield any remaining chunks
332
+ if pending_chunks:
333
+ final_new_audio = np.concatenate(pending_chunks)
334
+ total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
335
+ log_update = log + f"🎡 Streaming final chunk: {total_duration:.1f}s total\n"
336
+ yield (sample_rate, final_new_audio), None, log_update, gr.update(visible=True)
337
+ has_yielded_audio = True # Mark that we yielded audio
338
+
339
+ # Wait for generation to complete (with timeout to prevent hanging)
340
+ generation_thread.join(timeout=5.0) # Increased timeout to 5 seconds
341
+
342
+ # If thread is still alive after timeout, force end
343
+ if generation_thread.is_alive():
344
+ print("Warning: Generation thread did not complete within timeout")
345
+ audio_streamer.end()
346
+ generation_thread.join(timeout=5.0)
347
+
348
+ # Clean up
349
+ self.current_streamer = None
350
+ self.is_generating = False
351
+
352
+ generation_time = time.time() - start_time
353
+
354
+ # Check if stopped by user
355
+ if self.stop_generation:
356
+ yield None, None, "πŸ›‘ Generation stopped by user", gr.update(visible=False)
357
+ return
358
+
359
+ # Debug logging
360
+ # print(f"Debug: has_received_chunks={has_received_chunks}, chunk_count={chunk_count}, all_audio_chunks length={len(all_audio_chunks)}")
361
+
362
+ # Check if we received any chunks but didn't yield audio
363
+ if has_received_chunks and not has_yielded_audio and all_audio_chunks:
364
+ # We have chunks but didn't meet the yield criteria, yield them now
365
+ complete_audio = np.concatenate(all_audio_chunks)
366
+ final_duration = len(complete_audio) / sample_rate
367
+
368
+ final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
369
+ final_log += f"🎡 Final audio duration: {final_duration:.2f} seconds\n"
370
+ final_log += f"πŸ“Š Total chunks: {chunk_count}\n"
371
+ final_log += "✨ Generation successful! Complete audio is ready.\n"
372
+ final_log += "πŸ’‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
373
+
374
+ # Yield the complete audio
375
+ yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
376
+ return
377
+
378
+ if not has_received_chunks:
379
+ error_log = log + f"\n❌ Error: No audio chunks were received from the model. Generation time: {generation_time:.2f}s"
380
+ yield None, None, error_log, gr.update(visible=False)
381
+ return
382
+
383
+ if not has_yielded_audio:
384
+ error_log = log + f"\n❌ Error: Audio was generated but not streamed. Chunk count: {chunk_count}"
385
+ yield None, None, error_log, gr.update(visible=False)
386
+ return
387
+
388
+ # Prepare the complete audio
389
+ if all_audio_chunks:
390
+ complete_audio = np.concatenate(all_audio_chunks)
391
+ final_duration = len(complete_audio) / sample_rate
392
+
393
+ final_log = log + f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
394
+ final_log += f"🎡 Final audio duration: {final_duration:.2f} seconds\n"
395
+ final_log += f"πŸ“Š Total chunks: {chunk_count}\n"
396
+ final_log += "✨ Generation successful! Complete audio is ready in the 'Complete Audio' tab.\n"
397
+ final_log += "πŸ’‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
398
+
399
+ # Final yield: Clear streaming audio and provide complete audio
400
+ yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
401
+ else:
402
+ final_log = log + "❌ No audio was generated."
403
+ yield None, None, final_log, gr.update(visible=False)
404
+
405
+ except gr.Error as e:
406
+ # Handle Gradio-specific errors (like input validation)
407
+ self.is_generating = False
408
+ self.current_streamer = None
409
+ error_msg = f"❌ Input Error: {str(e)}"
410
+ print(error_msg)
411
+ yield None, None, error_msg, gr.update(visible=False)
412
+
413
+ except Exception as e:
414
+ self.is_generating = False
415
+ self.current_streamer = None
416
+ error_msg = f"❌ An unexpected error occurred: {str(e)}"
417
+ print(error_msg)
418
+ import traceback
419
+ traceback.print_exc()
420
+ yield None, None, error_msg, gr.update(visible=False)
421
+
422
+ def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer):
423
+ """Helper method to run generation with streamer in a separate thread."""
424
+ try:
425
+ # Check for stop signal before starting generation
426
+ if self.stop_generation:
427
+ audio_streamer.end()
428
+ return
429
+
430
+ # Define a stop check function that can be called from generate
431
+ def check_stop_generation():
432
+ return self.stop_generation
433
+
434
+ outputs = self.model.generate(
435
+ **inputs,
436
+ max_new_tokens=None,
437
+ cfg_scale=cfg_scale,
438
+ tokenizer=self.processor.tokenizer,
439
+ generation_config={
440
+ 'do_sample': False,
441
+ },
442
+ audio_streamer=audio_streamer,
443
+ stop_check_fn=check_stop_generation, # Pass the stop check function
444
+ verbose=False, # Disable verbose in streaming mode
445
+ refresh_negative=True,
446
+ )
447
+
448
+ except Exception as e:
449
+ print(f"Error in generation thread: {e}")
450
+ traceback.print_exc()
451
+ # Make sure to end the stream on error
452
+ audio_streamer.end()
453
+
454
+ def stop_audio_generation(self):
455
+ """Stop the current audio generation process."""
456
+ self.stop_generation = True
457
+ if self.current_streamer is not None:
458
+ try:
459
+ self.current_streamer.end()
460
+ except Exception as e:
461
+ print(f"Error stopping streamer: {e}")
462
+ print("πŸ›‘ Audio generation stop requested")
463
+
464
+ def load_example_scripts(self):
465
+ """Load example scripts from the text_examples directory."""
466
+ examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
467
+ self.example_scripts = []
468
+
469
+ # Check if text_examples directory exists
470
+ if not os.path.exists(examples_dir):
471
+ print(f"Warning: text_examples directory not found at {examples_dir}")
472
+ return
473
+
474
+ # Get all .txt files in the text_examples directory
475
+ txt_files = sorted([f for f in os.listdir(examples_dir)
476
+ if f.lower().endswith('.txt') and os.path.isfile(os.path.join(examples_dir, f))])
477
+
478
+ for txt_file in txt_files:
479
+ file_path = os.path.join(examples_dir, txt_file)
480
+
481
+ import re
482
+ # Check if filename contains a time pattern like "45min", "90min", etc.
483
+ time_pattern = re.search(r'(\d+)min', txt_file.lower())
484
+ if time_pattern:
485
+ minutes = int(time_pattern.group(1))
486
+ if minutes > 15:
487
+ print(f"Skipping {txt_file}: duration {minutes} minutes exceeds 15-minute limit")
488
+ continue
489
+
490
+ try:
491
+ with open(file_path, 'r', encoding='utf-8') as f:
492
+ script_content = f.read().strip()
493
+
494
+ # Remove empty lines and lines with only whitespace
495
+ script_content = '\n'.join(line for line in script_content.split('\n') if line.strip())
496
+
497
+ if not script_content:
498
+ continue
499
+
500
+ # Parse the script to determine number of speakers
501
+ num_speakers = self._get_num_speakers_from_script(script_content)
502
+
503
+ # Add to examples list as [num_speakers, script_content]
504
+ self.example_scripts.append([num_speakers, script_content])
505
+ print(f"Loaded example: {txt_file} with {num_speakers} speakers")
506
+
507
+ except Exception as e:
508
+ print(f"Error loading example script {txt_file}: {e}")
509
+
510
+ if self.example_scripts:
511
+ print(f"Successfully loaded {len(self.example_scripts)} example scripts")
512
+ else:
513
+ print("No example scripts were loaded")
514
+
515
+ def _get_num_speakers_from_script(self, script: str) -> int:
516
+ """Determine the number of unique speakers in a script."""
517
+ import re
518
+ speakers = set()
519
+
520
+ lines = script.strip().split('\n')
521
+ for line in lines:
522
+ # Use regex to find speaker patterns
523
+ match = re.match(r'^Speaker\s+(\d+)\s*:', line.strip(), re.IGNORECASE)
524
+ if match:
525
+ speaker_id = int(match.group(1))
526
+ speakers.add(speaker_id)
527
+
528
+ # If no speakers found, default to 1
529
+ if not speakers:
530
+ return 1
531
+
532
+ # Return the maximum speaker ID + 1 (assuming 0-based indexing)
533
+ # or the count of unique speakers if they're 1-based
534
+ max_speaker = max(speakers)
535
+ min_speaker = min(speakers)
536
+
537
+ if min_speaker == 0:
538
+ return max_speaker + 1
539
+ else:
540
+ # Assume 1-based indexing, return the count
541
+ return len(speakers)
542
+
543
+
544
+ def create_demo_interface(demo_instance: VibeVoiceDemo):
545
+ """Create the Gradio interface with streaming support."""
546
+
547
+ # Custom CSS for high-end aesthetics with lighter theme
548
+ custom_css = """
549
+ /* Modern light theme with gradients */
550
+ .gradio-container {
551
+ background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
552
+ font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, sans-serif;
553
+ }
554
+
555
+ /* Header styling */
556
+ .main-header {
557
+ background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
558
+ padding: 2rem;
559
+ border-radius: 20px;
560
+ margin-bottom: 2rem;
561
+ text-align: center;
562
+ box-shadow: 0 10px 40px rgba(102, 126, 234, 0.3);
563
+ }
564
+
565
+ .main-header h1 {
566
+ color: white;
567
+ font-size: 2.5rem;
568
+ font-weight: 700;
569
+ margin: 0;
570
+ text-shadow: 0 2px 4px rgba(0,0,0,0.3);
571
+ }
572
+
573
+ .main-header p {
574
+ color: rgba(255,255,255,0.9);
575
+ font-size: 1.1rem;
576
+ margin: 0.5rem 0 0 0;
577
+ }
578
+
579
+ /* Card styling */
580
+ .settings-card, .generation-card {
581
+ background: rgba(255, 255, 255, 0.8);
582
+ backdrop-filter: blur(10px);
583
+ border: 1px solid rgba(226, 232, 240, 0.8);
584
+ border-radius: 16px;
585
+ padding: 1.5rem;
586
+ margin-bottom: 1rem;
587
+ box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
588
+ }
589
+
590
+ /* Speaker selection styling */
591
+ .speaker-grid {
592
+ display: grid;
593
+ gap: 1rem;
594
+ margin-bottom: 1rem;
595
+ }
596
+
597
+ .speaker-item {
598
+ background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
599
+ border: 1px solid rgba(148, 163, 184, 0.4);
600
+ border-radius: 12px;
601
+ padding: 1rem;
602
+ color: #374151;
603
+ font-weight: 500;
604
+ }
605
+
606
+ /* Streaming indicator */
607
+ .streaming-indicator {
608
+ display: inline-block;
609
+ width: 10px;
610
+ height: 10px;
611
+ background: #22c55e;
612
+ border-radius: 50%;
613
+ margin-right: 8px;
614
+ animation: pulse 1.5s infinite;
615
+ }
616
+
617
+ @keyframes pulse {
618
+ 0% { opacity: 1; transform: scale(1); }
619
+ 50% { opacity: 0.5; transform: scale(1.1); }
620
+ 100% { opacity: 1; transform: scale(1); }
621
+ }
622
+
623
+ /* Queue status styling */
624
+ .queue-status {
625
+ background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%);
626
+ border: 1px solid rgba(14, 165, 233, 0.3);
627
+ border-radius: 8px;
628
+ padding: 0.75rem;
629
+ margin: 0.5rem 0;
630
+ text-align: center;
631
+ font-size: 0.9rem;
632
+ color: #0369a1;
633
+ }
634
+
635
+ .generate-btn {
636
+ background: linear-gradient(135deg, #059669 0%, #0d9488 100%);
637
+ border: none;
638
+ border-radius: 12px;
639
+ padding: 1rem 2rem;
640
+ color: white;
641
+ font-weight: 600;
642
+ font-size: 1.1rem;
643
+ box-shadow: 0 4px 20px rgba(5, 150, 105, 0.4);
644
+ transition: all 0.3s ease;
645
+ }
646
+
647
+ .generate-btn:hover {
648
+ transform: translateY(-2px);
649
+ box-shadow: 0 6px 25px rgba(5, 150, 105, 0.6);
650
+ }
651
+
652
+ .stop-btn {
653
+ background: linear-gradient(135deg, #ef4444 0%, #dc2626 100%);
654
+ border: none;
655
+ border-radius: 12px;
656
+ padding: 1rem 2rem;
657
+ color: white;
658
+ font-weight: 600;
659
+ font-size: 1.1rem;
660
+ box-shadow: 0 4px 20px rgba(239, 68, 68, 0.4);
661
+ transition: all 0.3s ease;
662
+ }
663
+
664
+ .stop-btn:hover {
665
+ transform: translateY(-2px);
666
+ box-shadow: 0 6px 25px rgba(239, 68, 68, 0.6);
667
+ }
668
+
669
+ /* Audio player styling */
670
+ .audio-output {
671
+ background: linear-gradient(135deg, #f1f5f9 0%, #e2e8f0 100%);
672
+ border-radius: 16px;
673
+ padding: 1.5rem;
674
+ border: 1px solid rgba(148, 163, 184, 0.3);
675
+ }
676
+
677
+ .complete-audio-section {
678
+ margin-top: 1rem;
679
+ padding: 1rem;
680
+ background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%);
681
+ border: 1px solid rgba(34, 197, 94, 0.3);
682
+ border-radius: 12px;
683
+ }
684
+
685
+ /* Text areas */
686
+ .script-input, .log-output {
687
+ background: rgba(255, 255, 255, 0.9) !important;
688
+ border: 1px solid rgba(148, 163, 184, 0.4) !important;
689
+ border-radius: 12px !important;
690
+ color: #1e293b !important;
691
+ font-family: 'JetBrains Mono', monospace !important;
692
+ }
693
+
694
+ .script-input::placeholder {
695
+ color: #64748b !important;
696
+ }
697
+
698
+ /* Sliders */
699
+ .slider-container {
700
+ background: rgba(248, 250, 252, 0.8);
701
+ border: 1px solid rgba(226, 232, 240, 0.6);
702
+ border-radius: 8px;
703
+ padding: 1rem;
704
+ margin: 0.5rem 0;
705
+ }
706
+
707
+ /* Labels and text */
708
+ .gradio-container label {
709
+ color: #374151 !important;
710
+ font-weight: 600 !important;
711
+ }
712
+
713
+ .gradio-container .markdown {
714
+ color: #1f2937 !important;
715
+ }
716
+
717
+ /* Responsive design */
718
+ @media (max-width: 768px) {
719
+ .main-header h1 { font-size: 2rem; }
720
+ .settings-card, .generation-card { padding: 1rem; }
721
+ }
722
+
723
+ /* Random example button styling - more subtle professional color */
724
+ .random-btn {
725
+ background: linear-gradient(135deg, #64748b 0%, #475569 100%);
726
+ border: none;
727
+ border-radius: 12px;
728
+ padding: 1rem 1.5rem;
729
+ color: white;
730
+ font-weight: 600;
731
+ font-size: 1rem;
732
+ box-shadow: 0 4px 20px rgba(100, 116, 139, 0.3);
733
+ transition: all 0.3s ease;
734
+ display: inline-flex;
735
+ align-items: center;
736
+ gap: 0.5rem;
737
+ }
738
+
739
+ .random-btn:hover {
740
+ transform: translateY(-2px);
741
+ box-shadow: 0 6px 25px rgba(100, 116, 139, 0.4);
742
+ background: linear-gradient(135deg, #475569 0%, #334155 100%);
743
+ }
744
+ """
745
+
746
+ with gr.Blocks(
747
+ title="VibeVoice - AI Podcast Generator",
748
+ css=custom_css,
749
+ theme=gr.themes.Soft(
750
+ primary_hue="blue",
751
+ secondary_hue="purple",
752
+ neutral_hue="slate",
753
+ )
754
+ ) as interface:
755
+
756
+ # Header
757
+ gr.HTML("""
758
+ <div class="main-header">
759
+ <h1>πŸŽ™οΈ Vibe Podcasting </h1>
760
+ <p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
761
+ </div>
762
+ """)
763
+
764
+ with gr.Row():
765
+ # Left column - Settings
766
+ with gr.Column(scale=1, elem_classes="settings-card"):
767
+ gr.Markdown("### πŸŽ›οΈ **Podcast Settings**")
768
+
769
+ # Number of speakers
770
+ num_speakers = gr.Slider(
771
+ minimum=1,
772
+ maximum=4,
773
+ value=2,
774
+ step=1,
775
+ label="Number of Speakers",
776
+ elem_classes="slider-container"
777
+ )
778
+
779
+ # Speaker selection
780
+ gr.Markdown("### 🎭 **Speaker Selection**")
781
+
782
+ available_speaker_names = list(demo_instance.available_voices.keys())
783
+ # default_speakers = available_speaker_names[:4] if len(available_speaker_names) >= 4 else available_speaker_names
784
+ default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
785
+
786
+ speaker_selections = []
787
+ for i in range(4):
788
+ default_value = default_speakers[i] if i < len(default_speakers) else None
789
+ speaker = gr.Dropdown(
790
+ choices=available_speaker_names,
791
+ value=default_value,
792
+ label=f"Speaker {i+1}",
793
+ visible=(i < 2), # Initially show only first 2 speakers
794
+ elem_classes="speaker-item"
795
+ )
796
+ speaker_selections.append(speaker)
797
+
798
+ # Advanced settings
799
+ gr.Markdown("### βš™οΈ **Advanced Settings**")
800
+
801
+ # Sampling parameters (contains all generation settings)
802
+ with gr.Accordion("Generation Parameters", open=False):
803
+ cfg_scale = gr.Slider(
804
+ minimum=1.0,
805
+ maximum=2.0,
806
+ value=1.3,
807
+ step=0.05,
808
+ label="CFG Scale (Guidance Strength)",
809
+ # info="Higher values increase adherence to text",
810
+ elem_classes="slider-container"
811
+ )
812
+
813
+ # Right column - Generation
814
+ with gr.Column(scale=2, elem_classes="generation-card"):
815
+ gr.Markdown("### πŸ“ **Script Input**")
816
+
817
+ script_input = gr.Textbox(
818
+ label="Conversation Script",
819
+ placeholder="""Enter your podcast script here. You can format it as:
820
+
821
+ Speaker 0: Welcome to our podcast today!
822
+ Speaker 1: Thanks for having me. I'm excited to discuss...
823
+
824
+ Or paste text directly and it will auto-assign speakers.""",
825
+ lines=12,
826
+ max_lines=20,
827
+ elem_classes="script-input"
828
+ )
829
+
830
+ # Button row with Random Example on the left and Generate on the right
831
+ with gr.Row():
832
+ # Random example button (now on the left)
833
+ random_example_btn = gr.Button(
834
+ "🎲 Random Example",
835
+ size="lg",
836
+ variant="secondary",
837
+ elem_classes="random-btn",
838
+ scale=1 # Smaller width
839
+ )
840
+
841
+ # Generate button (now on the right)
842
+ generate_btn = gr.Button(
843
+ "πŸš€ Generate Podcast",
844
+ size="lg",
845
+ variant="primary",
846
+ elem_classes="generate-btn",
847
+ scale=2 # Wider than random button
848
+ )
849
+
850
+ # Stop button
851
+ stop_btn = gr.Button(
852
+ "πŸ›‘ Stop Generation",
853
+ size="lg",
854
+ variant="stop",
855
+ elem_classes="stop-btn",
856
+ visible=False
857
+ )
858
+
859
+ # Streaming status indicator
860
+ streaming_status = gr.HTML(
861
+ value="""
862
+ <div style="background: linear-gradient(135deg, #dcfce7 0%, #bbf7d0 100%);
863
+ border: 1px solid rgba(34, 197, 94, 0.3);
864
+ border-radius: 8px;
865
+ padding: 0.75rem;
866
+ margin: 0.5rem 0;
867
+ text-align: center;
868
+ font-size: 0.9rem;
869
+ color: #166534;">
870
+ <span class="streaming-indicator"></span>
871
+ <strong>LIVE STREAMING</strong> - Audio is being generated in real-time
872
+ </div>
873
+ """,
874
+ visible=False,
875
+ elem_id="streaming-status"
876
+ )
877
+
878
+ # Output section
879
+ gr.Markdown("### 🎡 **Generated Podcast**")
880
+
881
+ # Streaming audio output (outside of tabs for simpler handling)
882
+ audio_output = gr.Audio(
883
+ label="Streaming Audio (Real-time)",
884
+ type="numpy",
885
+ elem_classes="audio-output",
886
+ streaming=True, # Enable streaming mode
887
+ autoplay=True,
888
+ show_download_button=False, # Explicitly show download button
889
+ visible=True
890
+ )
891
+
892
+ # Complete audio output (non-streaming)
893
+ complete_audio_output = gr.Audio(
894
+ label="Complete Podcast (Download after generation)",
895
+ type="numpy",
896
+ elem_classes="audio-output complete-audio-section",
897
+ streaming=False, # Non-streaming mode
898
+ autoplay=False,
899
+ show_download_button=True, # Explicitly show download button
900
+ visible=False # Initially hidden, shown when audio is ready
901
+ )
902
+
903
+ gr.Markdown("""
904
+ *πŸ’‘ **Streaming**: Audio plays as it's being generated (may have slight pauses)
905
+ *πŸ’‘ **Complete Audio**: Will appear below after generation finishes*
906
+ """)
907
+
908
+ # Generation log
909
+ log_output = gr.Textbox(
910
+ label="Generation Log",
911
+ lines=8,
912
+ max_lines=15,
913
+ interactive=False,
914
+ elem_classes="log-output"
915
+ )
916
+
917
+ def update_speaker_visibility(num_speakers):
918
+ updates = []
919
+ for i in range(4):
920
+ updates.append(gr.update(visible=(i < num_speakers)))
921
+ return updates
922
+
923
+ num_speakers.change(
924
+ fn=update_speaker_visibility,
925
+ inputs=[num_speakers],
926
+ outputs=speaker_selections
927
+ )
928
+
929
+ # Main generation function with streaming
930
+ def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
931
+ """Wrapper function to handle the streaming generation call."""
932
+ try:
933
+ # Extract speakers and parameters
934
+ speakers = speakers_and_params[:4] # First 4 are speaker selections
935
+ cfg_scale = speakers_and_params[4] # CFG scale
936
+
937
+ # Clear outputs and reset visibility at start
938
+ yield None, gr.update(value=None, visible=False), "πŸŽ™οΈ Starting generation...", gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
939
+
940
+ # The generator will yield multiple times
941
+ final_log = "Starting generation..."
942
+
943
+ for streaming_audio, complete_audio, log, streaming_visible in demo_instance.generate_podcast_streaming(
944
+ num_speakers=int(num_speakers),
945
+ script=script,
946
+ speaker_1=speakers[0],
947
+ speaker_2=speakers[1],
948
+ speaker_3=speakers[2],
949
+ speaker_4=speakers[3],
950
+ cfg_scale=cfg_scale
951
+ ):
952
+ final_log = log
953
+
954
+ # Check if we have complete audio (final yield)
955
+ if complete_audio is not None:
956
+ # Final state: clear streaming, show complete audio
957
+ yield None, gr.update(value=complete_audio, visible=True), log, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
958
+ else:
959
+ # Streaming state: update streaming audio only
960
+ if streaming_audio is not None:
961
+ yield streaming_audio, gr.update(visible=False), log, streaming_visible, gr.update(visible=False), gr.update(visible=True)
962
+ else:
963
+ # No new audio, just update status
964
+ yield None, gr.update(visible=False), log, streaming_visible, gr.update(visible=False), gr.update(visible=True)
965
+
966
+ except Exception as e:
967
+ error_msg = f"❌ A critical error occurred in the wrapper: {str(e)}"
968
+ print(error_msg)
969
+ import traceback
970
+ traceback.print_exc()
971
+ # Reset button states on error
972
+ yield None, gr.update(value=None, visible=False), error_msg, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
973
+
974
+ def stop_generation_handler():
975
+ """Handle stopping generation."""
976
+ demo_instance.stop_audio_generation()
977
+ # Return values for: log_output, streaming_status, generate_btn, stop_btn
978
+ return "πŸ›‘ Generation stopped.", gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
979
+
980
+ # Add a clear audio function
981
+ def clear_audio_outputs():
982
+ """Clear both audio outputs before starting new generation."""
983
+ return None, gr.update(value=None, visible=False)
984
+
985
+ # Connect generation button with streaming outputs
986
+ generate_btn.click(
987
+ fn=clear_audio_outputs,
988
+ inputs=[],
989
+ outputs=[audio_output, complete_audio_output],
990
+ queue=False
991
+ ).then(
992
+ fn=generate_podcast_wrapper,
993
+ inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
994
+ outputs=[audio_output, complete_audio_output, log_output, streaming_status, generate_btn, stop_btn],
995
+ queue=True # Enable Gradio's built-in queue
996
+ )
997
+
998
+ # Connect stop button
999
+ stop_btn.click(
1000
+ fn=stop_generation_handler,
1001
+ inputs=[],
1002
+ outputs=[log_output, streaming_status, generate_btn, stop_btn],
1003
+ queue=False # Don't queue stop requests
1004
+ ).then(
1005
+ # Clear both audio outputs after stopping
1006
+ fn=lambda: (None, None),
1007
+ inputs=[],
1008
+ outputs=[audio_output, complete_audio_output],
1009
+ queue=False
1010
+ )
1011
+
1012
+ # Function to randomly select an example
1013
+ def load_random_example():
1014
+ """Randomly select and load an example script."""
1015
+ import random
1016
+
1017
+ # Get available examples
1018
+ if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
1019
+ example_scripts = demo_instance.example_scripts
1020
+ else:
1021
+ # Fallback to default
1022
+ example_scripts = [
1023
+ [2, "Speaker 0: Welcome to our AI podcast demonstration!\nSpeaker 1: Thanks for having me. This is exciting!"]
1024
+ ]
1025
+
1026
+ # Randomly select one
1027
+ if example_scripts:
1028
+ selected = random.choice(example_scripts)
1029
+ num_speakers_value = selected[0]
1030
+ script_value = selected[1]
1031
+
1032
+ # Return the values to update the UI
1033
+ return num_speakers_value, script_value
1034
+
1035
+ # Default values if no examples
1036
+ return 2, ""
1037
+
1038
+ # Connect random example button
1039
+ random_example_btn.click(
1040
+ fn=load_random_example,
1041
+ inputs=[],
1042
+ outputs=[num_speakers, script_input],
1043
+ queue=False # Don't queue this simple operation
1044
+ )
1045
+
1046
+ # Add usage tips
1047
+ gr.Markdown("""
1048
+ ### πŸ’‘ **Usage Tips**
1049
+
1050
+ - Click **πŸš€ Generate Podcast** to start audio generation
1051
+ - **Live Streaming** tab shows audio as it's generated (may have slight pauses)
1052
+ - **Complete Audio** tab provides the full, uninterrupted podcast after generation
1053
+ - During generation, you can click **πŸ›‘ Stop Generation** to interrupt the process
1054
+ - The streaming indicator shows real-time generation progress
1055
+ """)
1056
+
1057
+ # Add example scripts
1058
+ gr.Markdown("### πŸ“š **Example Scripts**")
1059
+
1060
+ # Use dynamically loaded examples if available, otherwise provide a default
1061
+ if hasattr(demo_instance, 'example_scripts') and demo_instance.example_scripts:
1062
+ example_scripts = demo_instance.example_scripts
1063
+ else:
1064
+ # Fallback to a simple default example if no scripts loaded
1065
+ example_scripts = [
1066
+ [1, "Speaker 1: Welcome to our AI podcast demonstration! This is a sample script showing how VibeVoice can generate natural-sounding speech."]
1067
+ ]
1068
+
1069
+ gr.Examples(
1070
+ examples=example_scripts,
1071
+ inputs=[num_speakers, script_input],
1072
+ label="Try these example scripts:"
1073
+ )
1074
+
1075
+ return interface
1076
+
1077
+
1078
+ def convert_to_16_bit_wav(data):
1079
+ # Check if data is a tensor and move to cpu
1080
+ if torch.is_tensor(data):
1081
+ data = data.detach().cpu().numpy()
1082
+
1083
+ # Ensure data is numpy array
1084
+ data = np.array(data)
1085
+
1086
+ # Normalize to range [-1, 1] if it's not already
1087
+ if np.max(np.abs(data)) > 1.0:
1088
+ data = data / np.max(np.abs(data))
1089
+
1090
+ # Scale to 16-bit integer range
1091
+ data = (data * 32767).astype(np.int16)
1092
+ return data
1093
+
1094
+
1095
+ def parse_args():
1096
+ parser = argparse.ArgumentParser(description="VibeVoice Gradio Demo")
1097
+ parser.add_argument(
1098
+ "--model_path",
1099
+ type=str,
1100
+ default="/tmp/vibevoice-model",
1101
+ help="Path to the VibeVoice model directory",
1102
+ )
1103
+ parser.add_argument(
1104
+ "--device",
1105
+ type=str,
1106
+ default="cuda" if torch.cuda.is_available() else "cpu",
1107
+ help="Device for inference",
1108
+ )
1109
+ parser.add_argument(
1110
+ "--inference_steps",
1111
+ type=int,
1112
+ default=10,
1113
+ help="Number of inference steps for DDPM (not exposed to users)",
1114
+ )
1115
+ parser.add_argument(
1116
+ "--share",
1117
+ action="store_true",
1118
+ help="Share the demo publicly via Gradio",
1119
+ )
1120
+ parser.add_argument(
1121
+ "--port",
1122
+ type=int,
1123
+ default=7860,
1124
+ help="Port to run the demo on",
1125
+ )
1126
+
1127
+ return parser.parse_args()
1128
+
1129
+
1130
+ def main():
1131
+ """Main function to run the demo."""
1132
+ args = parse_args()
1133
+
1134
+ set_seed(42) # Set a fixed seed for reproducibility
1135
+
1136
+ print("πŸŽ™οΈ Initializing VibeVoice Demo with Streaming Support...")
1137
+
1138
+ # Initialize demo instance
1139
+ demo_instance = VibeVoiceDemo(
1140
+ model_path=args.model_path,
1141
+ device=args.device,
1142
+ inference_steps=args.inference_steps
1143
+ )
1144
+
1145
+ # Create interface
1146
+ interface = create_demo_interface(demo_instance)
1147
+
1148
+ print(f"πŸš€ Launching demo on port {args.port}")
1149
+ print(f"πŸ“ Model path: {args.model_path}")
1150
+ print(f"🎭 Available voices: {len(demo_instance.available_voices)}")
1151
+ print(f"πŸ”΄ Streaming mode: ENABLED")
1152
+ print(f"πŸ”’ Session isolation: ENABLED")
1153
+
1154
+ # Launch the interface
1155
+ try:
1156
+ interface.queue(
1157
+ max_size=20, # Maximum queue size
1158
+ default_concurrency_limit=1 # Process one request at a time
1159
+ ).launch(
1160
+ share=args.share,
1161
+ # server_port=args.port,
1162
+ server_name="0.0.0.0" if args.share else "127.0.0.1",
1163
+ show_error=True,
1164
+ show_api=False # Hide API docs for cleaner interface
1165
+ )
1166
+ except KeyboardInterrupt:
1167
+ print("\nπŸ›‘ Shutting down gracefully...")
1168
+ except Exception as e:
1169
+ print(f"❌ Server error: {e}")
1170
+ raise
1171
+
1172
+
1173
+ if __name__ == "__main__":
1174
+ main()