Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import spaces | |
import gradio as gr | |
from threading import Thread | |
from transformers import AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer, AutoTokenizer | |
# Model configuration | |
model_name = "Dorjzodovsuren/Mongolian_Llama3-v1.1" | |
max_seq_length = 1024 | |
dtype = torch.float16 # or torch.bfloat16 if preferred | |
load_in_4bit = False # if using bitsandbytes for 4-bit loading | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# # Load model | |
# model = AutoModelForCausalLM.from_pretrained( | |
# model_name, | |
# device_map="auto", | |
# torch_dtype=dtype, | |
# load_in_4bit=load_in_4bit # This requires `bitsandbytes` to be installed | |
# ) | |
model_id = "unsloth/llama-3.1-8b-bnb-4bit" | |
peft_model_id = "Dorjzodovsuren/Mongolian_Llama3-v1.1" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
model.load_adapter(peft_model_id) | |
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{} | |
### Input: | |
{} | |
### Response: | |
{}""" | |
# Get the device based on GPU availability | |
device = 'cuda' | |
# Move model into device | |
model = model.to(device) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
# Current implementation does not support conversation based on history. | |
# Highly recommend to experiment on various hyper parameters to compare qualities. | |
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 60)) | |
def predict(message, history): | |
stop = StopOnTokens() | |
messages = alpaca_prompt.format( | |
message, | |
"", | |
"", | |
) | |
model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
#streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
top_p=0.95, | |
temperature=0.001, | |
repetition_penalty=1.1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
# Add a simple chat example | |
examples = [ | |
["What's the capital of France?"], | |
["What is meaning of life?"], | |
["Хайр гэж юу вэ?"] | |
] | |
gr.ChatInterface(predict, examples=examples).launch(debug=True, share=True, show_api=True) |