import os
import re
import gradio as gr
import edge_tts
import asyncio
import time
import tempfile
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
def get_translation(context_custom, language = 'en'):
translated = GoogleTranslator(source = 'auto', target = language).translate(text = context_custom)
return translated
#client = InferenceClient("mistralai/Mixtral-8x22B-Instruct-v0.1")
system_instructions1 = "[SYSTEM] You are AI assistant named DorjTranslator, Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if super interlligent AI assistant. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
global history
history = []
def format_prompt(message, history):
prompt = system_instructions1
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
async def generate1(prompt, history=[], b=None):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=256,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
#formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
#prompt_en = get_translation(prompt)
#formatted_prompt = format_prompt(f"{system_instructions1}, {prompt_en}", history) + "[DORJGPT]"
#stream = client.text_generation(
#formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
#output = ""
#for response in stream:
#output += response.token.text
#output = output.replace("","")
output_mn = get_translation(prompt, language="mn")
#history.append([prompt_en, output])
#communicate = edge_tts.Communicate(output_mn, voice="mn-MN-BataaNeural")
communicate = edge_tts.Communicate(output_mn, voice="mn-MN-YesuiNeural")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
with gr.Blocks(theme="gradio/monochrome", title="DorjTranslator") as demo:
gr.HTML("""