Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- README.md +13 -10
- app.py +20 -0
- config.py +6 -0
- logger.py +4 -0
- requirements.txt +4 -0
- sentence_embeddings.py +84 -0
README.md
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
1 |
+
https://huggingface.co/blog/HemanthSai7/deploy-applications-on-huggingface-spaces
|
2 |
+
|
3 |
+
Objective: Convert any Huggingface repository into an API endpoint
|
4 |
+
|
5 |
+
Users should be able to call the task and get back in the standard format
|
6 |
+
|
7 |
+
/sentence-embeddings
|
8 |
+
|
9 |
+
{
|
10 |
+
"model": "BAAI/bge-base-en-v1.5",
|
11 |
+
"inputs: ["This is one text", "This is second text"],
|
12 |
+
"parameters": {}
|
13 |
+
}
|
app.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi.middleware.cors import CORSMiddleware
|
2 |
+
from fastapi import FastAPI
|
3 |
+
import sentence_embeddings
|
4 |
+
|
5 |
+
app = FastAPI()
|
6 |
+
|
7 |
+
# CORS Support: https://stackoverflow.com/a/66460861
|
8 |
+
origins = ["*"]
|
9 |
+
app.add_middleware(
|
10 |
+
CORSMiddleware,
|
11 |
+
allow_origins=origins,
|
12 |
+
allow_credentials=True,
|
13 |
+
allow_methods=["*"],
|
14 |
+
allow_headers=["*"],
|
15 |
+
)
|
16 |
+
|
17 |
+
app.include_router(sentence_embeddings.router)
|
18 |
+
if __name__ == '__main__':
|
19 |
+
import uvicorn
|
20 |
+
uvicorn.run(app, host='0.0.0.0', port=8000)
|
config.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import dotenv
|
3 |
+
|
4 |
+
dotenv.load_dotenv()
|
5 |
+
|
6 |
+
TEST_MODE = (os.getenv('TEST_MODE', 'False') == "True")
|
logger.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
def log(data: dict):
|
4 |
+
print(f"{datetime.now().isoformat()}: {data}")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
fastapi
|
4 |
+
uvicorn
|
sentence_embeddings.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
from fastapi import APIRouter
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
import torch
|
6 |
+
from datetime import datetime
|
7 |
+
from logger import log
|
8 |
+
from hf_to_api.config import TEST_MODE
|
9 |
+
|
10 |
+
router = APIRouter()
|
11 |
+
|
12 |
+
class SentenceEmbeddingsInput(BaseModel):
|
13 |
+
inputs: list[str]
|
14 |
+
model: str
|
15 |
+
parameters: dict
|
16 |
+
|
17 |
+
class SentenceEmbeddingsOutput(BaseModel):
|
18 |
+
embeddings: Optional[list[list[float]]] = None
|
19 |
+
error: Optional[str] = None
|
20 |
+
|
21 |
+
@router.post('/sentence-embeddings')
|
22 |
+
def sentence_embeddings(inputs: SentenceEmbeddingsInput):
|
23 |
+
start_time = datetime.now()
|
24 |
+
fn = sentence_embeddings_mapping.get(inputs.model)
|
25 |
+
if not fn:
|
26 |
+
return SentenceEmbeddingsOutput(
|
27 |
+
error=f'No sentence embeddings model found for {inputs.model}'
|
28 |
+
)
|
29 |
+
|
30 |
+
try:
|
31 |
+
embeddings = fn(inputs.inputs, inputs.parameters)
|
32 |
+
|
33 |
+
log({
|
34 |
+
"task": "sentence_embeddings",
|
35 |
+
"model": inputs.model,
|
36 |
+
"start_time": start_time.isoformat(),
|
37 |
+
"time_taken": (datetime.now() - start_time).total_seconds(),
|
38 |
+
"inputs": inputs.inputs,
|
39 |
+
"outputs": embeddings,
|
40 |
+
"parameters": inputs.parameters,
|
41 |
+
})
|
42 |
+
loaded_models_last_updated[inputs.model] = datetime.now()
|
43 |
+
return SentenceEmbeddingsOutput(
|
44 |
+
embeddings=embeddings
|
45 |
+
)
|
46 |
+
except Exception as e:
|
47 |
+
return SentenceEmbeddingsOutput(
|
48 |
+
error=str(e)
|
49 |
+
)
|
50 |
+
|
51 |
+
def generic_sentence_embeddings(model_name: str):
|
52 |
+
global loaded_models
|
53 |
+
|
54 |
+
def process_texts(texts: list[str], parameters: dict):
|
55 |
+
if TEST_MODE:
|
56 |
+
return [[0.1,0.2]] * len(texts)
|
57 |
+
|
58 |
+
if model_name in loaded_models:
|
59 |
+
tokenizer, model = loaded_models[model_name]
|
60 |
+
else:
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
62 |
+
model = AutoModel.from_pretrained(model_name)
|
63 |
+
loaded_models[model] = (tokenizer, model)
|
64 |
+
|
65 |
+
# Tokenize sentences
|
66 |
+
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
|
67 |
+
with torch.no_grad():
|
68 |
+
model_output = model(**encoded_input)
|
69 |
+
sentence_embeddings = model_output[0][:, 0]
|
70 |
+
|
71 |
+
# normalize embeddings
|
72 |
+
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
73 |
+
return sentence_embeddings.tolist()
|
74 |
+
|
75 |
+
return process_texts
|
76 |
+
|
77 |
+
# Polling every X minutes to
|
78 |
+
loaded_models = {}
|
79 |
+
loaded_models_last_updated = {}
|
80 |
+
|
81 |
+
sentence_embeddings_mapping = {
|
82 |
+
'BAAI/bge-base-en-v1.5': generic_sentence_embeddings('BAAI/bge-base-en-v1.5'),
|
83 |
+
'BAAI/bge-large-en-v1.5': generic_sentence_embeddings('BAAI/bge-large-en-v1.5'),
|
84 |
+
}
|