File size: 1,008 Bytes
77ff10e
fb4f107
920410d
c1ca3b6
 
 
 
920410d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77ff10e
 
920410d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast

# Load the mBART model and tokenizer for multilingual translation
model_name = "facebook/mbart-large-50-many-to-many-mmt"
model = MBartForConditionalGeneration.from_pretrained(model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(model_name, src_lang="en_XX", tgt_lang="th_TH")

# Prediction function
def translate_text(input_text):
    inputs = tokenizer.encode(input_text, return_tensors="pt")
    outputs = model.generate(
        inputs, 
        max_new_tokens=40, 
        do_sample=True, 
        top_k=30, 
        top_p=0.95
    )
    translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return translated_text

# Gradio interface
interface = gr.Interface(
    fn=translate_text,
    inputs="text",
    outputs="text",
    title="Language Translation",
    description="Translate text using the my_awesome_opus_books_model."
)

# Launch the Gradio app
interface.launch()