import os import gradio as gr import requests import json from urllib.parse import quote auth_token = os.environ.get("kinit_mgt_access_token") share = os.environ.get("GRADIO_SHARE") def get_api_response(text): url = "https://mgt-detector.model.kinit.sk/prod/?q=" + quote(text) payload = {} headers = { 'x-api-key': auth_token } response = requests.request("GET", url, headers=headers, data=payload) response = json.loads(response.text) return response def predict(text): #return 'machine', 1.0 res = get_api_response(text) if 'pred' not in res.keys(): return "Waiting for the server startup (up to 1 min for the first request), try again!", "Waiting for the server startup (up to 1 min for the first request), try again!" pred = "Very likely human-written" if res['score'] > 0.05: pred = "Likely human-written" if res['score'] > 0.5: pred = "Likely machine-generated" if res['score'] > 0.95: pred = "Very likely machine-generated" return pred,res['score'] with gr.Blocks(analytics_enabled=False) as demo: gr.Markdown(""" ## DEMO: KInIT Multilingual Machine-Generated Text Detector Trained on [MULTITuDE](https://aclanthology.org/2023.emnlp-main.616/) (news articles) and [MultiSocial](https://arxiv.org/abs/2406.12549) (social media texts) texts in 22 languages. """) gr.Markdown(""" **Disclaimer: This is a DEMO for showcase, not the final tool. The detector is based on AI transformer model and is NOT 100% accurate! Usage is intended for research purpose only, as an indicator. Do not use it for direct decision making!**""") gr.Markdown("""To generate exemplar text by a large language model, you can use [HuggingFace Chat](https://huggingface.co/chat/).""") t1 = gr.Textbox(lines=10, label='Text',value="Put your text (in any language) in here to try out our multilingual machine-generated text detector.") button1 = gr.Button("Run detection") label1 = gr.Textbox(lines=1, label='Result') score1 = gr.Textbox(lines=1, label='Probability (closer to 0 means higher probability of text being written by a human, closer to 1 means higher probability of text being generated by an AI model)') button1.click(predict, inputs=[t1], outputs=[label1,score1], api_name=False) if __name__ == "__main__": demo.launch(show_api=False, share=share)