import gradio as gr from huggingface_hub import InferenceClient import os # Initialize the client with the token client = InferenceClient("Dolly135/Pen_Model", token=os.getenv("token")) # Modify the respond function to accept additional arguments def respond( message: str, history: list, # Simplified to accept Gradio's format system_message: str, temperature: float, top_p: float, max_new_tokens: int, # New parameter for max tokens ): # Initialize messages with the system message messages = [{"role": "system", "content": system_message}] # Append history messages messages.extend(history) # Append the current user message messages.append({"role": "user", "content": message}) try: response = "" for msg in client.text_generation( messages, stream=True, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, # Pass max tokens to model ): token = msg.choices[0].delta.content response += token yield response except Exception as e: yield f"An error occurred: {str(e)}" # Gradio setup using ChatInterface if gr.__version__ >= '0.8.0': demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are Pen.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) else: demo = gr.ChatInterface( fn=respond, system_message=gr.Textbox(value="You are Pen.", label="System message"), max_tokens=gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), temperature=gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), top_p=gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ) if __name__ == "__main__": demo.launch()