Spaces:
Sleeping
Sleeping
from typing import Callable | |
import dotenv | |
import hydra | |
from omegaconf import OmegaConf, DictConfig | |
# load environment variables from `.env` file if it exists | |
# recursively searches for `.env` in all folders starting from work dir | |
dotenv.load_dotenv(override=True) | |
OmegaConf.register_new_resolver('eval', eval) | |
OmegaConf.register_new_resolver('div_up', lambda x, y: (x + y - 1) // y) | |
# Delay the evaluation until we have the datamodule | |
# So we want the resolver to yield the same string. | |
OmegaConf.register_new_resolver('datamodule', lambda attr: '${datamodule:' + str(attr) + '}') | |
# Turn on TensorFloat32 | |
import torch.backends | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
def dictconfig_filter_key(d: DictConfig, fn: Callable) -> DictConfig: | |
"""Only keep keys where fn(key) is True. Support nested DictConfig. | |
""" | |
# Using d.items_ex(resolve=False) instead of d.items() since we want to keep the | |
# ${datamodule:foo} unresolved for now. | |
return DictConfig({k: dictconfig_filter_key(v, fn) if isinstance(v, DictConfig) else v | |
# for k, v in d.items_ex(resolve=False) if fn(k)}) | |
for k, v in d.items() if fn(k)}) | |
def main(config: DictConfig): | |
# Remove config keys that start with '__'. These are meant to be used only in computing | |
# other entries in the config. | |
config = dictconfig_filter_key(config, lambda k: not k.startswith('__')) | |
# Imports should be nested inside @hydra.main to optimize tab completion | |
# Read more here: https://github.com/facebookresearch/hydra/issues/934 | |
from src.train import train | |
from src.eval import evaluate | |
from src.utils import utils | |
# A couple of optional utilities: | |
# - disabling python warnings | |
# - forcing debug-friendly configuration | |
# - verifying experiment name is set when running in experiment mode | |
# You can safely get rid of this line if you don't want those | |
utils.extras(config) | |
# Pretty print config using Rich library | |
if config.get("print_config"): | |
utils.print_config(config, resolve=True) | |
# Train model | |
mode = config.get('mode', 'train') | |
if mode not in ['train', 'eval']: | |
raise NotImplementedError(f'mode {mode} not supported') | |
if mode == 'train': | |
return train(config) | |
elif mode == 'eval': | |
return evaluate(config) | |
if __name__ == "__main__": | |
main() | |