Spaces:
Sleeping
Sleeping
import re | |
import time | |
import pytest | |
import torch | |
from einops import rearrange | |
from flash_attn.models.gpt import GPTLMHeadModel | |
from flash_attn.models.opt import opt_config_to_gpt2_config, remap_state_dict_hf_opt | |
from flash_attn.utils.generation import update_graph_cache | |
from flash_attn.utils.pretrained import state_dict_from_pretrained | |
from transformers import AutoTokenizer, OPTConfig | |
from transformers.models.opt.modeling_opt import OPTForCausalLM | |
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"]) | |
def test_opt_state_dict(model_name): | |
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) | |
pretrained_state_dict = remap_state_dict_hf_opt(state_dict_from_pretrained(model_name), config) | |
model = GPTLMHeadModel(config) | |
state_dict = model.state_dict() | |
assert state_dict.keys() == pretrained_state_dict.keys() | |
for k in state_dict.keys(): | |
assert state_dict[k].shape == pretrained_state_dict[k].shape | |
# @pytest.mark.parametrize('model_name', ["facebook/opt-350m"]) | |
def test_opt_optimized(model_name): | |
"""Check that our implementation of OPT (without all optimizations enabled) matches the | |
HF implementation: the output of our forward pass in fp16 should be around the same as the HF | |
forward pass in fp16, when compared to the HF forward pass in fp32. | |
""" | |
dtype = torch.float16 | |
device = "cuda" | |
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) | |
config.use_flash_attn = True | |
config.fused_bias_fc = True | |
config.fused_mlp = True | |
config.fused_dropout_add_ln = True | |
# Only prenorm supports residual_in_fp32 | |
config.residual_in_fp32 = getattr(config, "prenorm", True) | |
config.pad_vocab_size_multiple = 8 | |
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) | |
model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device) | |
model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device) | |
model.eval() | |
model_ref.eval() | |
model_hf.eval() | |
torch.manual_seed(0) | |
batch_size = 2 | |
max_seqlen = 256 | |
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda") | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda" | |
) | |
if model_name != "facebook/opt-350m": # The OPT-350m projects the embeddings to dimension 512 | |
out = model.transformer(input_ids) | |
out_hf = model_hf.model(input_ids).last_hidden_state | |
out_ref = model_ref.model(input_ids).last_hidden_state | |
print(f"Output max diff: {(out - out_ref).abs().max().item()}") | |
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") | |
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() | |
logits = model(input_ids).logits | |
logits_hf = model_hf(input_ids).logits | |
logits_ref = model_ref(input_ids).logits | |
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") | |
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") | |
assert (logits - logits_ref).abs().max().item() < 3 * ( | |
logits_hf - logits_ref | |
).abs().max().item() | |
# @pytest.mark.parametrize('model_name', ["facebook/opt-125m"]) | |
def test_opt_generation(model_name): | |
"""Check that our implementation of OPT generation matches the HF implementation: | |
the scores in fp16 should be around the same as the HF scores in fp16, when compared to | |
the HF scores in fp32. | |
""" | |
print(f"\nMODEL: {model_name}") | |
verbose = False | |
dtype = torch.float16 | |
device = "cuda" | |
rtol, atol = 3e-3, 3e-1 | |
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) | |
# Only prenorm supports residual_in_fp32 | |
config.residual_in_fp32 = getattr(config, "prenorm", True) | |
config.use_flash_attn = True | |
config.fused_bias_fc = True | |
config.fused_mlp = True | |
config.fused_dropout_add_ln = True | |
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) | |
model.eval() | |
torch.manual_seed(0) | |
# OPT tokenizer requires use_fast=False | |
# https://huggingface.co/docs/transformers/model_doc/opt | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) | |
eos_token_id = tokenizer.eos_token_id | |
input_ids = tokenizer("Hello, my dog is cute and he", return_tensors="pt").input_ids.to( | |
device=device | |
) | |
max_length = 25 | |
# input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda') | |
# max_length = input_ids.shape[1] + 40 | |
# Slow generation for reference | |
sequences = [] | |
scores = [] | |
cur_input_ids = input_ids | |
with torch.inference_mode(): | |
scores.append(model(cur_input_ids).logits[:, -1]) | |
sequences.append(scores[-1].argmax(dim=-1)) | |
for _ in range(input_ids.shape[1] + 1, max_length): | |
cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], "b -> b 1")], dim=-1) | |
scores.append(model(cur_input_ids).logits[:, -1]) | |
sequences.append(scores[-1].argmax(dim=-1)) | |
if eos_token_id is not None and (sequences[-1] == eos_token_id).all(): | |
break | |
sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) | |
scores = tuple(scores) | |
print("Without CUDA graph") | |
torch.cuda.synchronize() | |
start = time.time() | |
out = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
eos_token_id=eos_token_id, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
if verbose: | |
print(out.sequences) | |
print(tokenizer.batch_decode(out.sequences.tolist())) | |
if getattr(config, "use_flash_attn", False): | |
# Capture graph outside the timing loop | |
batch_size, seqlen_og = input_ids.shape | |
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) | |
print("With CUDA graph") | |
torch.cuda.synchronize() | |
start = time.time() | |
out_cg = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
cg=True, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
if verbose: | |
print(out_cg.sequences) | |
print(tokenizer.batch_decode(out_cg.sequences.tolist())) | |
del model | |
model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device) | |
model_hf.eval() | |
print("HF fp16") | |
torch.cuda.synchronize() | |
start = time.time() | |
out_hf = model_hf.generate( | |
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
del model_hf | |
model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device) | |
model_ref.eval() | |
print("HF fp32") | |
torch.cuda.synchronize() | |
start = time.time() | |
out_ref = model_ref.generate( | |
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
del model_ref | |
print(tokenizer.batch_decode(out_ref.sequences.tolist())) | |
if verbose: | |
print( | |
f"Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" | |
) | |
print( | |
f"Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" | |
) | |
print( | |
f"HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}" | |
) | |
print( | |
f"HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}" | |
) | |
assert torch.all(out.sequences == sequences) | |
assert torch.allclose( | |
torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol | |
) | |
assert torch.all(out.sequences == out_ref.sequences) | |
assert torch.all(out.sequences == out_hf.sequences) | |
assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * ( | |
torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1) | |
).abs().max().item() | |