Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
import time | |
import pytest | |
import torch | |
from flash_attn.models.gpt import GPTLMHeadModel | |
from flash_attn.models.gpt_neox import gpt_neox_config_to_gpt2_config, remap_state_dict_hf_gpt_neox | |
from flash_attn.utils.pretrained import state_dict_from_pretrained | |
from transformers import AutoTokenizer, GPTNeoXConfig | |
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM | |
def test_gptj_state_dict(model_name): | |
config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name)) | |
pretrained_state_dict = remap_state_dict_hf_gpt_neox( | |
state_dict_from_pretrained(model_name), config | |
) | |
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow | |
state_dict = model.state_dict() | |
assert state_dict.keys() == pretrained_state_dict.keys() | |
for k in state_dict.keys(): | |
assert state_dict[k].shape == pretrained_state_dict[k].shape | |
def test_gpt_neox_optimized(model_name): | |
"""Check that our implementation of GPT-NeoX (with all optimizations enabled) matches the | |
HF implementation: the output of our forward pass in fp16 should be around the same as the HF | |
forward pass in fp16, when compared to the HF forward pass in fp32. | |
""" | |
dtype = torch.float16 | |
device = "cuda" | |
config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name)) | |
config.use_flash_attn = True | |
config.fused_bias_fc = True | |
config.fused_mlp = config.activation_function in [ | |
"gelu_fast", | |
"gelu_new", | |
"gelu_approx", | |
"gelu_pytorch_tanh", | |
] | |
config.fused_dropout_add_ln = True | |
config.residual_in_fp32 = True | |
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) | |
model.eval() | |
torch.manual_seed(0) | |
batch_size = 2 | |
max_seqlen = 256 | |
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device | |
) | |
with torch.no_grad(): | |
out = model.transformer(input_ids) | |
logits = model(input_ids).logits | |
del model | |
# Need at least 2 GPUs, otherwise we'll OOM for the 20B model | |
# Without device_map, the model is loaded on the CPU, which is very slow | |
model_ref = GPTNeoXForCausalLM.from_pretrained(model_name, device_map="auto") | |
model_ref.eval() | |
with torch.no_grad(): | |
out_ref = model_ref.gpt_neox(input_ids).last_hidden_state.to(device=device) | |
logits_ref = model_ref(input_ids).logits.to(device=device) | |
del model_ref | |
model_hf = GPTNeoXForCausalLM.from_pretrained( | |
model_name, torch_dtype=dtype, device_map={"": device} | |
) | |
model_hf.eval() | |
with torch.no_grad(): | |
out_hf = model_hf.gpt_neox(input_ids).last_hidden_state | |
logits_hf = model_hf(input_ids).logits | |
del model_hf | |
print(f"Output max diff: {(out - out_ref).abs().max().item()}") | |
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") | |
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item() | |
assert (out - out_ref).abs().mean().item() < 2 * (out_hf - out_ref).abs().mean().item() | |
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") | |
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") | |
assert (logits - logits_ref).abs().max().item() < 2 * ( | |
logits_hf - logits_ref | |
).abs().max().item() | |
assert (logits - logits_ref).abs().mean().item() < 2 * ( | |
logits_hf - logits_ref | |
).abs().mean().item() | |