Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Copyright (c) 2023, Tri Dao.
import time
import pytest
import torch
from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.models.gpt_neox import gpt_neox_config_to_gpt2_config, remap_state_dict_hf_gpt_neox
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import AutoTokenizer, GPTNeoXConfig
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
@pytest.mark.parametrize("model_name", ["EleutherAI/gpt-neox-20b"])
def test_gptj_state_dict(model_name):
config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name))
pretrained_state_dict = remap_state_dict_hf_gpt_neox(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
state_dict = model.state_dict()
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
@pytest.mark.parametrize(
"model_name",
[
"EleutherAI/pythia-1b",
"EleutherAI/pythia-2.8b",
"EleutherAI/gpt-neox-20b",
"togethercomputer/RedPajama-INCITE-7B-Base",
],
)
def test_gpt_neox_optimized(model_name):
"""Check that our implementation of GPT-NeoX (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
device = "cuda"
config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name))
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = config.activation_function in [
"gelu_fast",
"gelu_new",
"gelu_approx",
"gelu_pytorch_tanh",
]
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
logits = model(input_ids).logits
del model
# Need at least 2 GPUs, otherwise we'll OOM for the 20B model
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref = GPTNeoXForCausalLM.from_pretrained(model_name, device_map="auto")
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.gpt_neox(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = GPTNeoXForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map={"": device}
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.gpt_neox(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
assert (out - out_ref).abs().mean().item() < 2 * (out_hf - out_ref).abs().mean().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * (
logits_hf - logits_ref
).abs().max().item()
assert (logits - logits_ref).abs().mean().item() < 2 * (
logits_hf - logits_ref
).abs().mean().item()