Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Copyright (c) 2023, Tri Dao.
import os
import time
from pathlib import Path
current_dir = Path(__file__).parent.absolute()
import pytest
import torch
from einops import rearrange
from flash_attn.models.falcon import falcon_config_to_gpt2_config, remap_state_dict_hf_falcon
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.generation import update_graph_cache
from flash_attn.utils.pretrained import state_dict_from_pretrained
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
@pytest.mark.parametrize("model_name", ["tiiuae/falcon-7b", "tiiuae/falcon-40b"])
def test_falcon_state_dict(model_name):
config = falcon_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
pretrained_state_dict = remap_state_dict_hf_falcon(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
state_dict = model.state_dict()
assert state_dict.keys() == pretrained_state_dict.keys()
for k in state_dict.keys():
assert state_dict[k].shape == pretrained_state_dict[k].shape
@pytest.mark.parametrize("model_name", ["tiiuae/falcon-7b"])
def test_falcon_optimized(model_name):
"""Check that our implementation (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
device = "cuda"
config = falcon_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused MLP for "gelu" activation
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
logits = model(input_ids).logits
del model
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map={"": device}, trust_remote_code=True
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
)
model_hf.eval()
out_hf = model_hf.transformer(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 3 * (
logits_hf - logits_ref
).abs().max().item()
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_forward"
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough
# memory to run the model in fp32.
@pytest.mark.parametrize("world_size", [4])
@pytest.mark.parametrize("model_name", ["tiiuae/falcon-40b"])
def test_falcon_parallel_forward(model_name, world_size):
from apex.transformer import parallel_state
dtype = torch.float16
config = falcon_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.use_flash_attn = False
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused MLP for "gelu" activation
config.fused_dropout_add_ln = False
config.residual_in_fp32 = True
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
pretrained_state_dict = remap_state_dict_hf_falcon(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
torch.manual_seed(0)
batch_size = 2
max_seqlen = 256
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
input_ids = torch.randint(
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
)
with torch.no_grad():
out = model.transformer(input_ids)
out, _ = all_gather_raw(out, process_group=process_group)
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
logits = model(input_ids).logits
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
logits, _ = all_gather_raw(logits, process_group)
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
del model
parallel_state.destroy_model_parallel()
if rank == 0:
model_hf = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
)
model_hf.eval()
out_hf = model_hf.transformer(input_ids).last_hidden_state.to(device=device)
logits_hf = model_hf(input_ids).logits.to(device=device)
del model_hf
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
assert (logits - logits_ref).abs().max().item() < 2 * (
logits_hf - logits_ref
).abs().max().item()
@pytest.mark.parametrize("model_name", ["tiiuae/falcon-7b"])
def test_falcon_generation(model_name):
"""Check that our implementation (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
device = "cuda"
config = falcon_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused MLP for "gelu" activation
config.fused_dropout_add_ln = True
config.residual_in_fp32 = True
tokenizer = AutoTokenizer.from_pretrained(model_name)
eos_token_id = tokenizer.eos_token_id
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
model_hf = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
out_hf = model_hf.generate(
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map={"": device}, trust_remote_code=True
)
model_ref.eval()
with torch.no_grad():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
del model_ref
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
print("Without CUDA graph")
torch.cuda.synchronize()
start = time.time()
out = model.generate(
input_ids=input_ids,
max_length=max_length,
eos_token_id=eos_token_id,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
torch.cuda.synchronize()
start = time.time()
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
cg=True,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
teacher_outputs=out_hf.sequences,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
with torch.no_grad():
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
del model
hf_error = (logits_hf - logits_ref).abs().max().item()
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
assert torch.equal(logits_cg, logits)
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_generation"
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough
# memory to run the model in fp32.
@pytest.mark.parametrize("world_size", [4])
@pytest.mark.parametrize("model_name", ["tiiuae/falcon-40b"])
def test_falcon_parallel_generation(model_name, world_size):
"""Check that our implementation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
from apex.transformer import parallel_state
dtype = torch.float16
config = falcon_config_to_gpt2_config(
AutoConfig.from_pretrained(model_name, trust_remote_code=True)
)
config.use_flash_attn = False
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused MLP for "gelu" activation
config.fused_dropout_add_ln = False
config.residual_in_fp32 = True
config.pad_vocab_size_multiple = 8 * world_size
config.sequence_parallel = False # Need to set this to False for generation
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
)
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch.cuda.set_device(device)
pretrained_state_dict = remap_state_dict_hf_falcon(
state_dict_from_pretrained(model_name), config
)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
print("Without CUDA graph")
out = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print("With CUDA graph")
out_cg = model.generate(
input_ids=input_ids,
max_length=max_length,
tensor_parallel=world_size,
vocab_size=config.vocab_size,
cg=True,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True,
output_scores=True,
enable_timing=True,
)
del model
parallel_state.destroy_model_parallel()
if rank == 0:
model_hf = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
with torch.inference_mode():
out_hf = model_hf.generate(
input_ids=input_ids,
max_length=max_length,
return_dict_in_generate=True,
output_scores=True,
)
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
del model_hf
model_ref = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
)
model_ref.eval()
with torch.inference_mode():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
del model_ref
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f"HF fp16 logits max diff: {hf_error}")
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
assert torch.equal(logits_cg, logits)