Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, Tri Dao. | |
import os | |
import time | |
from pathlib import Path | |
current_dir = Path(__file__).parent.absolute() | |
import pytest | |
import torch | |
from einops import rearrange | |
from flash_attn.models.falcon import falcon_config_to_gpt2_config, remap_state_dict_hf_falcon | |
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp | |
from flash_attn.utils.distributed import all_gather_raw | |
from flash_attn.utils.generation import update_graph_cache | |
from flash_attn.utils.pretrained import state_dict_from_pretrained | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
def test_falcon_state_dict(model_name): | |
config = falcon_config_to_gpt2_config( | |
AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
) | |
pretrained_state_dict = remap_state_dict_hf_falcon( | |
state_dict_from_pretrained(model_name), config | |
) | |
model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow | |
state_dict = model.state_dict() | |
assert state_dict.keys() == pretrained_state_dict.keys() | |
for k in state_dict.keys(): | |
assert state_dict[k].shape == pretrained_state_dict[k].shape | |
def test_falcon_optimized(model_name): | |
"""Check that our implementation (with all optimizations enabled) matches the | |
HF implementation: the output of our forward pass in fp16 should be around the same as the HF | |
forward pass in fp16, when compared to the HF forward pass in fp32. | |
""" | |
dtype = torch.float16 | |
device = "cuda" | |
config = falcon_config_to_gpt2_config( | |
AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
) | |
config.use_flash_attn = True | |
config.fused_bias_fc = True | |
config.fused_mlp = False # We don't have fused MLP for "gelu" activation | |
config.fused_dropout_add_ln = True | |
config.residual_in_fp32 = True | |
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) | |
model.eval() | |
torch.manual_seed(0) | |
batch_size = 2 | |
max_seqlen = 256 | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device | |
) | |
with torch.no_grad(): | |
out = model.transformer(input_ids) | |
logits = model(input_ids).logits | |
del model | |
# Without device_map, the model is loaded on the CPU, which is very slow | |
model_ref = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map={"": device}, trust_remote_code=True | |
) | |
model_ref.eval() | |
with torch.no_grad(): | |
out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device) | |
logits_ref = model_ref(input_ids).logits.to(device=device) | |
del model_ref | |
model_hf = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True | |
) | |
model_hf.eval() | |
out_hf = model_hf.transformer(input_ids).last_hidden_state | |
logits_hf = model_hf(input_ids).logits | |
del model_hf | |
print(f"Output max diff: {(out - out_ref).abs().max().item()}") | |
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") | |
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() | |
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") | |
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") | |
assert (logits - logits_ref).abs().max().item() < 3 * ( | |
logits_hf - logits_ref | |
).abs().max().item() | |
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_forward" | |
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough | |
# memory to run the model in fp32. | |
def test_falcon_parallel_forward(model_name, world_size): | |
from apex.transformer import parallel_state | |
dtype = torch.float16 | |
config = falcon_config_to_gpt2_config( | |
AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
) | |
config.use_flash_attn = False | |
config.fused_bias_fc = True | |
config.fused_mlp = False # We don't have fused MLP for "gelu" activation | |
config.fused_dropout_add_ln = False | |
config.residual_in_fp32 = True | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
device = f"cuda:{torch.distributed.get_rank()}" | |
assert world_size <= torch.distributed.get_world_size() | |
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) | |
rank = parallel_state.get_tensor_model_parallel_rank() | |
process_group = parallel_state.get_tensor_model_parallel_group() | |
pretrained_state_dict = remap_state_dict_hf_falcon( | |
state_dict_from_pretrained(model_name), config | |
) | |
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype) | |
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)) | |
model.eval() | |
torch.manual_seed(0) | |
batch_size = 2 | |
max_seqlen = 256 | |
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device | |
) | |
with torch.no_grad(): | |
out = model.transformer(input_ids) | |
out, _ = all_gather_raw(out, process_group=process_group) | |
out = rearrange(out, "(b s) d -> b s d", b=batch_size) | |
logits = model(input_ids).logits | |
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size) | |
logits, _ = all_gather_raw(logits, process_group) | |
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size) | |
del model | |
parallel_state.destroy_model_parallel() | |
if rank == 0: | |
model_hf = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True | |
) | |
model_hf.eval() | |
out_hf = model_hf.transformer(input_ids).last_hidden_state.to(device=device) | |
logits_hf = model_hf(input_ids).logits.to(device=device) | |
del model_hf | |
# Without device_map, the model is loaded on the CPU, which is very slow | |
model_ref = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map="auto", trust_remote_code=True | |
) | |
model_ref.eval() | |
with torch.no_grad(): | |
out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device) | |
logits_ref = model_ref(input_ids).logits.to(device=device) | |
del model_ref | |
print(f"Output max diff: {(out - out_ref).abs().max().item()}") | |
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") | |
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item() | |
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") | |
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") | |
assert (logits - logits_ref).abs().max().item() < 2 * ( | |
logits_hf - logits_ref | |
).abs().max().item() | |
def test_falcon_generation(model_name): | |
"""Check that our implementation (with all optimizations enabled) matches the | |
HF implementation: the output of our forward pass in fp16 should be around the same as the HF | |
forward pass in fp16, when compared to the HF forward pass in fp32. | |
""" | |
dtype = torch.float16 | |
device = "cuda" | |
config = falcon_config_to_gpt2_config( | |
AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
) | |
config.use_flash_attn = True | |
config.fused_bias_fc = True | |
config.fused_mlp = False # We don't have fused MLP for "gelu" activation | |
config.fused_dropout_add_ln = True | |
config.residual_in_fp32 = True | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
eos_token_id = tokenizer.eos_token_id | |
torch.manual_seed(0) | |
batch_size = 1 | |
seqlen = 100 | |
max_length = 150 | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device | |
) | |
model_hf = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True | |
) | |
model_hf.eval() | |
print("HF fp16") | |
torch.cuda.synchronize() | |
start = time.time() | |
out_hf = model_hf.generate( | |
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
del model_hf | |
model_ref = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map={"": device}, trust_remote_code=True | |
) | |
model_ref.eval() | |
with torch.no_grad(): | |
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1] | |
del model_ref | |
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) | |
model.eval() | |
print("Without CUDA graph") | |
torch.cuda.synchronize() | |
start = time.time() | |
out = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
eos_token_id=eos_token_id, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
teacher_outputs=out_hf.sequences, | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
# Capture graph outside the timing loop | |
batch_size, seqlen_og = input_ids.shape | |
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) | |
print("With CUDA graph") | |
torch.cuda.synchronize() | |
start = time.time() | |
out_cg = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
cg=True, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
teacher_outputs=out_hf.sequences, | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
with torch.no_grad(): | |
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1] | |
logits_hf = torch.stack(out_hf.scores, dim=1) | |
logits = torch.stack(out.scores, dim=1) | |
logits_cg = torch.stack(out_cg.scores, dim=1) | |
del model | |
hf_error = (logits_hf - logits_ref).abs().max().item() | |
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error | |
print(f"HF fp16 logits max diff: {hf_error}") | |
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }") | |
assert (logits - logits_ref).abs().max().item() < 2 * hf_error | |
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }") | |
assert torch.equal(logits_cg, logits) | |
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_generation" | |
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough | |
# memory to run the model in fp32. | |
def test_falcon_parallel_generation(model_name, world_size): | |
"""Check that our implementation matches the HF implementation: | |
the scores in fp16 should be around the same as the HF scores in fp16, when compared to | |
the HF scores in fp32. | |
""" | |
from apex.transformer import parallel_state | |
dtype = torch.float16 | |
config = falcon_config_to_gpt2_config( | |
AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
) | |
config.use_flash_attn = False | |
config.fused_bias_fc = True | |
config.fused_mlp = False # We don't have fused MLP for "gelu" activation | |
config.fused_dropout_add_ln = False | |
config.residual_in_fp32 = True | |
config.pad_vocab_size_multiple = 8 * world_size | |
config.sequence_parallel = False # Need to set this to False for generation | |
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0" | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
device = f"cuda:{torch.distributed.get_rank()}" | |
assert world_size <= torch.distributed.get_world_size() | |
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) | |
rank = parallel_state.get_tensor_model_parallel_rank() | |
process_group = parallel_state.get_tensor_model_parallel_group() | |
torch.manual_seed(0) | |
batch_size = 1 | |
seqlen = 100 | |
max_length = 150 | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device | |
) | |
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both | |
# GPU0 and GPU1 and things would hang | |
torch.cuda.set_device(device) | |
pretrained_state_dict = remap_state_dict_hf_falcon( | |
state_dict_from_pretrained(model_name), config | |
) | |
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype) | |
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)) | |
model.eval() | |
print("Without CUDA graph") | |
out = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
tensor_parallel=world_size, | |
vocab_size=config.vocab_size, | |
# teacher_outputs=out_hf.sequences, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
) | |
# Capture graph outside the timing loop | |
batch_size, seqlen_og = input_ids.shape | |
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) | |
print("With CUDA graph") | |
out_cg = model.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
tensor_parallel=world_size, | |
vocab_size=config.vocab_size, | |
cg=True, | |
# teacher_outputs=out_hf.sequences, | |
return_dict_in_generate=True, | |
output_scores=True, | |
enable_timing=True, | |
) | |
del model | |
parallel_state.destroy_model_parallel() | |
if rank == 0: | |
model_hf = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True | |
) | |
model_hf.eval() | |
print("HF fp16") | |
torch.cuda.synchronize() | |
start = time.time() | |
with torch.inference_mode(): | |
out_hf = model_hf.generate( | |
input_ids=input_ids, | |
max_length=max_length, | |
return_dict_in_generate=True, | |
output_scores=True, | |
) | |
torch.cuda.synchronize() | |
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") | |
del model_hf | |
model_ref = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map="auto", trust_remote_code=True | |
) | |
model_ref.eval() | |
with torch.inference_mode(): | |
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1] | |
del model_ref | |
logits_hf = torch.stack(out_hf.scores, dim=1) | |
logits = torch.stack(out.scores, dim=1) | |
logits_cg = torch.stack(out_cg.scores, dim=1) | |
hf_error = (logits_hf - logits_ref).abs().max().item() | |
print(f"HF fp16 logits max diff: {hf_error}") | |
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }") | |
assert (logits - logits_ref).abs().max().item() < 2 * hf_error | |
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }") | |
assert torch.equal(logits_cg, logits) | |