Spaces:
Sleeping
Sleeping
import re | |
from collections import OrderedDict | |
import pytest | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
from transformers import BertConfig | |
from transformers.models.bert.modeling_bert import BertForPreTraining as BertForPreTrainingHF | |
from transformers.models.bert.modeling_bert import BertModel as BertModelHF | |
from flash_attn.models.bert import ( | |
BertForPreTraining, | |
BertModel, | |
inv_remap_state_dict, | |
remap_state_dict, | |
) | |
from flash_attn.utils.pretrained import state_dict_from_pretrained | |
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"]) | |
def test_bert_state_dict(model_name): | |
config = BertConfig.from_pretrained(model_name) | |
pretrained_state_dict = remap_state_dict(state_dict_from_pretrained(model_name), config) | |
model = BertForPreTraining(config) | |
state_dict = model.state_dict() | |
assert state_dict.keys() == pretrained_state_dict.keys() | |
for k in state_dict.keys(): | |
assert state_dict[k].shape == pretrained_state_dict[k].shape | |
def get_hf_models(model_name, config, dtype): | |
pretrained_state_dict = state_dict_from_pretrained(model_name) | |
def key_mapping_ln_gamma_beta(key): | |
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) | |
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) | |
return key | |
pretrained_state_dict = OrderedDict( | |
(key_mapping_ln_gamma_beta(k), v) for k, v in pretrained_state_dict.items() | |
) | |
model_hf = BertForPreTrainingHF(config) | |
# Missing key(s) in state_dict: "bert.embeddings.position_ids", "cls.predictions.decoder.bias" | |
# position_ids is a buffer, and predictions.decoder.bias is tied to predictions.bias. | |
model_hf.load_state_dict(pretrained_state_dict, strict=False) | |
model_hf.cuda().to(dtype=dtype) | |
return model_hf | |
def test_bert_non_optimized(model_name): | |
"""Check that our implementation of BERT (without any optimizations enabled) matches the | |
HF implementation: the output of our forward pass in fp16 should be around the same as the HF | |
forward pass in fp16, when compared to the HF forward pass in fp32. | |
""" | |
dtype = torch.float16 | |
config = BertConfig.from_pretrained(model_name) | |
model = BertForPreTraining.from_pretrained(model_name, config) | |
model = model.cuda().to(dtype=dtype) | |
model_ref = get_hf_models(model_name, config, torch.float32) | |
model_hf = get_hf_models(model_name, config, dtype) | |
model.eval() | |
model_ref.eval() | |
model_hf.eval() | |
torch.manual_seed(0) | |
batch_size = 4 | |
max_seqlen = 512 | |
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda") | |
attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None] | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda" | |
) | |
out = model.bert(input_ids, attention_mask=attention_mask) | |
sequence_output, pooled_output = out.last_hidden_state, out.pooler_output | |
out_hf = model_hf.bert(input_ids, attention_mask=attention_mask) | |
sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output | |
out_ref = model_ref.bert(input_ids, attention_mask=attention_mask) | |
sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output | |
print(f"Output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}") | |
print(f"Output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}") | |
print(f"HF fp16 max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}") | |
print(f"HF fp16 mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}") | |
assert (sequence_output - sequence_output_ref).abs().max().item() < 3 * ( | |
sequence_output_hf - sequence_output_ref | |
).abs().max().item() | |
assert (pooled_output - pooled_output_ref).abs().max().item() < 3 * ( | |
pooled_output_hf - pooled_output_ref | |
).abs().max().item() | |
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"]) | |
def test_bert_optimized(model_name): | |
"""Check that our implementation of BERT (with all optimizations enabled) matches the | |
HF implementation: the output of our forward pass in fp16 should be around the same as the HF | |
forward pass in fp16, when compared to the HF forward pass in fp32. | |
""" | |
dtype = torch.float16 | |
config = BertConfig.from_pretrained(model_name) | |
# Our implementation of fused_mlp assumes the activation is | |
# nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new", "gelu_fast", or "gelu_pytorch_tanh". | |
# If you just want "gelu", disable fused_mlp. | |
config.hidden_act = "gelu_new" | |
config.use_flash_attn = True | |
config.fused_bias_fc = True | |
config.fused_mlp = True | |
config.fused_dropout_add_ln = True | |
model = BertForPreTraining.from_pretrained(model_name, config) | |
model = model.cuda().to(dtype=dtype) | |
model_ref = get_hf_models(model_name, config, torch.float32) | |
model_hf = get_hf_models(model_name, config, dtype) | |
model.eval() | |
model_ref.eval() | |
model_hf.eval() | |
torch.manual_seed(0) | |
batch_size = 4 | |
max_seqlen = 512 | |
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda") | |
attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None] | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda" | |
) | |
out = model.bert(input_ids, attention_mask=attention_mask) | |
sequence_output, pooled_output = out.last_hidden_state, out.pooler_output | |
out_hf = model_hf.bert(input_ids, attention_mask=attention_mask) | |
sequence_output_hf, pooled_output_hf = out_hf.last_hidden_state, out_hf.pooler_output | |
# Need to zero out the padded tokens in the sequence before comparison. | |
sequence_output_hf[~attention_mask, :] = 0.0 | |
out_ref = model_ref.bert(input_ids, attention_mask=attention_mask) | |
sequence_output_ref, pooled_output_ref = out_ref.last_hidden_state, out_ref.pooler_output | |
sequence_output_ref[~attention_mask, :] = 0.0 | |
print( | |
f"BertModel output max diff: {(sequence_output - sequence_output_ref).abs().max().item()}" | |
) | |
print( | |
f"BertModel output mean diff: {(sequence_output - sequence_output_ref).abs().mean().item()}" | |
) | |
print( | |
f"HF fp16 BertModel max diff: {(sequence_output_hf - sequence_output_ref).abs().max().item()}" | |
) | |
print( | |
f"HF fp16 BertModel mean diff: {(sequence_output_hf - sequence_output_ref).abs().mean().item()}" | |
) | |
assert (sequence_output - sequence_output_ref).abs().max().item() < 4 * ( | |
sequence_output_hf - sequence_output_ref | |
).abs().max().item() | |
assert (pooled_output - pooled_output_ref).abs().max().item() < 4 * ( | |
pooled_output_hf - pooled_output_ref | |
).abs().max().item() | |
out = model(input_ids, attention_mask=attention_mask) | |
prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits | |
# Need to zero out the padded tokens in the sequence before comparison. | |
prediction_scores = prediction_scores.clone() | |
prediction_scores[~attention_mask, :] = 0.0 | |
out_hf = model_hf(input_ids, attention_mask=attention_mask) | |
prediction_scores_hf, seq_relationship_scores_hf = ( | |
out_hf.prediction_logits, | |
out_hf.seq_relationship_logits, | |
) | |
prediction_scores_hf[~attention_mask, :] = 0.0 | |
out_ref = model_ref(input_ids, attention_mask=attention_mask) | |
prediction_scores_ref, seq_relationship_scores_ref = ( | |
out_ref.prediction_logits, | |
out_ref.seq_relationship_logits, | |
) | |
prediction_scores_ref[~attention_mask, :] = 0.0 | |
print( | |
f"prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}" | |
) | |
print( | |
f"prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}" | |
) | |
print( | |
f"HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}" | |
) | |
print( | |
f"HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}" | |
) | |
assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * ( | |
prediction_scores_hf - prediction_scores_ref | |
).abs().max().item() | |
assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * ( | |
seq_relationship_scores_hf - seq_relationship_scores_ref | |
).abs().max().item() | |
# @pytest.mark.parametrize('last_layer_subset', [True]) | |
# @pytest.mark.parametrize('has_key_padding_mask', [True]) | |
# @pytest.mark.parametrize('model_name', ["bert-base-uncased"]) | |
def test_bert_dense_seq_output(model_name, has_key_padding_mask, last_layer_subset): | |
"""Check that our implementation of BERT (with all optimizations enabled) matches the | |
HF implementation: the output of our forward pass in fp16 should be around the same as the HF | |
forward pass in fp16, when compared to the HF forward pass in fp32. | |
""" | |
dtype = torch.float16 | |
config = BertConfig.from_pretrained(model_name) | |
# Our implementation of fused_mlp assumes the activation is | |
# nn.GELU(approximate='tanh'). Huggingface calls it "gelu_new", "gelu_fast", or "gelu_pytorch_tanh". | |
# If you just want "gelu", disable fused_mlp. | |
config.hidden_act = "gelu_new" | |
config.use_flash_attn = True | |
config.fused_bias_fc = True | |
config.fused_mlp = True | |
config.fused_dropout_add_ln = True | |
config.dense_seq_output = True | |
config.last_layer_subset = last_layer_subset | |
config.use_xentropy = True | |
model = BertForPreTraining.from_pretrained(model_name, config) | |
model = model.cuda().to(dtype=dtype) | |
model_ref = get_hf_models(model_name, config, torch.float32) | |
model_hf = get_hf_models(model_name, config, dtype) | |
model.eval() | |
model_ref.eval() | |
model_hf.eval() | |
torch.manual_seed(0) | |
batch_size = 4 | |
max_seqlen = 512 | |
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda") | |
if has_key_padding_mask: | |
attention_mask = torch.arange(max_seqlen, device="cuda")[None, :] < seqlens[:, None] | |
else: | |
attention_mask = None | |
input_ids = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda" | |
) | |
labels = torch.randint( | |
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda" | |
) | |
if attention_mask is not None: | |
labels[~attention_mask] = 0 | |
labels[(torch.rand(batch_size, max_seqlen, device="cuda") > 0.15)] = 0 | |
masked_tokens_mask = labels.flatten() > 0 | |
next_sequence_label = torch.randint(0, 2, (batch_size,), device="cuda") | |
out = model( | |
input_ids, | |
attention_mask=attention_mask, | |
labels=labels, | |
next_sentence_label=next_sequence_label, | |
) | |
prediction_scores, seq_relationship_scores = out.prediction_logits, out.seq_relationship_logits | |
out_hf = model_hf( | |
input_ids, | |
attention_mask=attention_mask, | |
labels=labels, | |
next_sentence_label=next_sequence_label, | |
) | |
prediction_scores_hf, seq_relationship_scores_hf = ( | |
out_hf.prediction_logits, | |
out_hf.seq_relationship_logits, | |
) | |
prediction_scores_hf = rearrange(prediction_scores_hf, "b s d -> (b s) d")[masked_tokens_mask] | |
out_ref = model_ref( | |
input_ids, | |
attention_mask=attention_mask, | |
labels=labels, | |
next_sentence_label=next_sequence_label, | |
) | |
prediction_scores_ref, seq_relationship_scores_ref = ( | |
out_ref.prediction_logits, | |
out_ref.seq_relationship_logits, | |
) | |
prediction_scores_ref = rearrange(prediction_scores_ref, "b s d -> (b s) d")[masked_tokens_mask] | |
print( | |
f"prediction_scores max diff: {(prediction_scores - prediction_scores_ref).abs().max().item()}" | |
) | |
print( | |
f"prediction_scores mean diff: {(prediction_scores - prediction_scores_ref).abs().mean().item()}" | |
) | |
print( | |
f"HF fp16 prediction_scoresff: {(prediction_scores_hf - prediction_scores_ref).abs().max().item()}" | |
) | |
print( | |
f"HF fp16 prediction_scoresiff: {(prediction_scores_hf - prediction_scores_ref).abs().mean().item()}" | |
) | |
assert (prediction_scores - prediction_scores_ref).abs().max().item() < 2 * ( | |
prediction_scores_hf - prediction_scores_ref | |
).abs().max().item() | |
assert (seq_relationship_scores - seq_relationship_scores_ref).abs().max().item() < 2 * ( | |
seq_relationship_scores_hf - seq_relationship_scores_ref | |
).abs().max().item() | |
# The loss calculation from HF is wrong: it doesn't ignore the labels that are 0. | |
# assert (out.loss - out_ref.loss).abs().max().item() < 2 * (out_hf.loss - out_ref.loss).abs().max().item() | |
def test_inv_remap_state_dict(model_name: str): | |
""" | |
Verify that we can convert a HF BERT model to flash_attn and back. | |
""" | |
state_dict = state_dict_from_pretrained(model_name) | |
config = BertConfig.from_pretrained(model_name) | |
flash_state_dict = remap_state_dict(state_dict, config) | |
recovered_state_dict = inv_remap_state_dict(flash_state_dict, config) | |
assert set(state_dict.keys()) == set(recovered_state_dict.keys()) | |
for k in state_dict.keys(): | |
assert state_dict[k].shape == recovered_state_dict[k].shape | |
torch.testing.assert_close(state_dict[k], recovered_state_dict[k], rtol=1e-6, atol=1e-6) | |