Spaces:
Sleeping
Sleeping
# Run test with: | |
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/losses/test_cross_entropy_parallel.py | |
import math | |
import pytest | |
import torch | |
from apex.transformer import parallel_state, tensor_parallel | |
from flash_attn.losses.cross_entropy import CrossEntropyLoss | |
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 | |
# @pytest.mark.parametrize("dtype", [torch.float16]) | |
# @pytest.mark.parametrize("inplace_backward", [False]) | |
# @pytest.mark.parametrize("lse_square_scale", [0.0]) | |
# @pytest.mark.parametrize("logit_scale", [1.0]) | |
# @pytest.mark.parametrize("smoothing", [0.0]) | |
# test vocab larger than 64k for split | |
# @pytest.mark.parametrize("vocab_size", [50264]) # test vocab larger than 64k for split | |
# @pytest.mark.parametrize("world_size", [1, 2]) | |
def test_cross_entropy_loss_parallel( | |
vocab_size, world_size, smoothing, logit_scale, lse_square_scale, inplace_backward, dtype | |
): | |
assert vocab_size % world_size == 0 | |
rtol, atol = ( | |
(1e-5, 2e-5) | |
if dtype == torch.float32 | |
else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3)) | |
) | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
partition_vocab_size = vocab_size // world_size | |
device = f"cuda:{torch.distributed.get_rank()}" | |
assert world_size <= torch.distributed.get_world_size() | |
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) | |
rank = parallel_state.get_tensor_model_parallel_rank() | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 8 | |
seqlen = 128 | |
x_pt = ( | |
torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype) * 10 | |
).requires_grad_() | |
x = ( | |
tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt) | |
.detach() | |
.clone() | |
.requires_grad_() | |
) | |
y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) | |
y[torch.randperm(batch_size * seqlen)[:10]] = -100 | |
model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing, reduction="none") | |
model = CrossEntropyLoss( | |
label_smoothing=smoothing, | |
logit_scale=logit_scale, | |
reduction="none", | |
lse_square_scale=lse_square_scale, | |
inplace_backward=inplace_backward, | |
process_group=parallel_state.get_tensor_model_parallel_group(), | |
) | |
out = model(x, y) | |
out_pt = model_pt(x_pt.float() * logit_scale, y) | |
if lse_square_scale > 0.0: | |
lse_pt = torch.logsumexp(x_pt.float() * logit_scale, dim=-1) | |
out_pt += lse_square_scale * lse_pt.square() | |
out_pt.masked_fill_(y == -100, 0.0) | |
assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6) | |
g = torch.randn_like(out) | |
out_pt.backward(g) | |
out.backward(g) | |
assert torch.allclose( | |
x.grad, | |
x_pt.grad[:, (rank * partition_vocab_size) : (rank + 1) * partition_vocab_size], | |
rtol=rtol, | |
atol=atol, | |
) | |
parallel_state.destroy_model_parallel() | |