Factory-POC / flash-attention /tests /losses /test_cross_entropy_parallel.py
Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Run test with:
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/losses/test_cross_entropy_parallel.py
import math
import pytest
import torch
from apex.transformer import parallel_state, tensor_parallel
from flash_attn.losses.cross_entropy import CrossEntropyLoss
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
@pytest.mark.parametrize(
"dtype", [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])
)
# @pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("inplace_backward", [False, True])
# @pytest.mark.parametrize("inplace_backward", [False])
@pytest.mark.parametrize("lse_square_scale", [0.0, 1e-2])
# @pytest.mark.parametrize("lse_square_scale", [0.0])
@pytest.mark.parametrize("logit_scale", [0.7])
# @pytest.mark.parametrize("logit_scale", [1.0])
@pytest.mark.parametrize("smoothing", [0.0, 0.9])
# @pytest.mark.parametrize("smoothing", [0.0])
@pytest.mark.parametrize("vocab_size", [50264, 256 * 1024]) # test vocab larger than 64k for split
# @pytest.mark.parametrize("vocab_size", [50264]) # test vocab larger than 64k for split
# @pytest.mark.parametrize("world_size", [1, 2])
@pytest.mark.parametrize("world_size", [2])
def test_cross_entropy_loss_parallel(
vocab_size, world_size, smoothing, logit_scale, lse_square_scale, inplace_backward, dtype
):
assert vocab_size % world_size == 0
rtol, atol = (
(1e-5, 2e-5)
if dtype == torch.float32
else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3))
)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
partition_vocab_size = vocab_size // world_size
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 128
x_pt = (
torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype) * 10
).requires_grad_()
x = (
tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt)
.detach()
.clone()
.requires_grad_()
)
y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
y[torch.randperm(batch_size * seqlen)[:10]] = -100
model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing, reduction="none")
model = CrossEntropyLoss(
label_smoothing=smoothing,
logit_scale=logit_scale,
reduction="none",
lse_square_scale=lse_square_scale,
inplace_backward=inplace_backward,
process_group=parallel_state.get_tensor_model_parallel_group(),
)
out = model(x, y)
out_pt = model_pt(x_pt.float() * logit_scale, y)
if lse_square_scale > 0.0:
lse_pt = torch.logsumexp(x_pt.float() * logit_scale, dim=-1)
out_pt += lse_square_scale * lse_pt.square()
out_pt.masked_fill_(y == -100, 0.0)
assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6)
g = torch.randn_like(out)
out_pt.backward(g)
out.backward(g)
assert torch.allclose(
x.grad,
x_pt.grad[:, (rank * partition_vocab_size) : (rank + 1) * partition_vocab_size],
rtol=rtol,
atol=atol,
)
parallel_state.destroy_model_parallel()