Factory-POC / flash-attention /tests /test_flash_attn.py
Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
raw
history blame
98.7 kB
import math
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from flash_attn import (
flash_attn_func,
flash_attn_kvpacked_func,
flash_attn_qkvpacked_func,
flash_attn_varlen_func,
flash_attn_varlen_kvpacked_func,
flash_attn_varlen_qkvpacked_func,
flash_attn_with_kvcache,
)
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import _get_block_size_n
from flash_attn.layers.rotary import apply_rotary_emb
MAX_HEADDIM_SM8x = 192
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
def attn_bias_from_alibi_slopes(
slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False
):
batch, nheads = slopes.shape
device = slopes.device
slopes = rearrange(slopes, "b h -> b h 1 1")
if causal:
return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
else:
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
sk = (
seqlen_k
if key_padding_mask is None
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
)
sq = (
seqlen_q
if query_padding_mask is None
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
)
relative_pos = torch.abs(row_idx + sk - sq - col_idx)
return -slopes * relative_pos.to(dtype=slopes.dtype)
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
assert mode in ["full", "random", "third"]
if mode == "full":
lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
elif mode == "random":
lengths = torch.randint(
max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
)
elif mode == "third":
lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
padding_mask = (
repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
)
return padding_mask
def generate_qkv(
q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, d)
k: (batch_size, seqlen_k, nheads_k, d)
v: (batch_size, seqlen_k, nheads_k, d)
query_padding_mask: (batch_size, seqlen), bool
key_padding_mask: (batch_size, seqlen), bool
"""
assert not (kvpacked and qkvpacked)
batch_size, seqlen_q, nheads, d = q.shape
_, seqlen_k, nheads_k, _ = k.shape
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
assert v.shape == (batch_size, seqlen_k, nheads_k, d)
if query_padding_mask is not None:
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
output_pad_fn = lambda output_unpad: pad_input(
output_unpad, indices_q, batch_size, seqlen_q
)
else:
q_unpad = rearrange(q, "b s h d -> (b s) h d")
cu_seqlens_q = torch.arange(
0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
)
max_seqlen_q = seqlen_q
output_pad_fn = lambda output_unpad: rearrange(
output_unpad, "(b s) h d -> b s h d", b=batch_size
)
if key_padding_mask is not None:
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
else:
k_unpad = rearrange(k, "b s h d -> (b s) h d")
v_unpad = rearrange(v, "b s h d -> (b s) h d")
cu_seqlens_k = torch.arange(
0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
)
max_seqlen_k = seqlen_k
if qkvpacked:
assert (query_padding_mask == key_padding_mask).all()
assert nheads == nheads_k
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
qkv = torch.stack([q, k, v], dim=2)
if query_padding_mask is not None:
dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
else:
dqkv_pad_fn = lambda dqkv_unpad: rearrange(
dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
)
return (
qkv_unpad.detach().requires_grad_(),
cu_seqlens_q,
max_seqlen_q,
qkv.detach().requires_grad_(),
output_pad_fn,
dqkv_pad_fn,
)
elif kvpacked:
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
kv = torch.stack([k, v], dim=2)
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
else:
dkv_pad_fn = lambda dkv_unpad: rearrange(
dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
)
return (
q_unpad.detach().requires_grad_(),
kv_unpad.detach().requires_grad_(),
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q.detach().requires_grad_(),
kv.detach().requires_grad_(),
output_pad_fn,
dq_pad_fn,
dkv_pad_fn,
)
else:
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
else:
dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
return (
q_unpad.detach().requires_grad_(),
k_unpad.detach().requires_grad_(),
v_unpad.detach().requires_grad_(),
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q.detach().requires_grad_(),
k.detach().requires_grad_(),
v.detach().requires_grad_(),
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
)
def construct_local_mask(
seqlen_q,
seqlen_k,
window_size=(-1, -1), # -1 means infinite window size
query_padding_mask=None,
key_padding_mask=None,
device=None,
):
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
sk = (
seqlen_k
if key_padding_mask is None
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
)
sq = (
seqlen_q
if query_padding_mask is None
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
)
if window_size[0] < 0:
return col_idx > row_idx + sk - sq + window_size[1]
else:
sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
return torch.logical_or(
col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
col_idx < row_idx + sk - sq - window_size[0],
)
def attention_ref(
q,
k,
v,
query_padding_mask=None,
key_padding_mask=None,
attn_bias=None,
dropout_p=0.0,
dropout_mask=None,
causal=False,
window_size=(-1, -1), # -1 means infinite window size
upcast=True,
reorder_ops=False,
):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, head_dim)
k: (batch_size, seqlen_k, nheads_k, head_dim)
v: (batch_size, seqlen_k, nheads_k, head_dim)
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
dropout_p: float
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
causal: whether to apply causal masking
window_size: (int, int), left and right window size
upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
output back to fp16/bf16.
reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
without changing the math. This is to estimate the numerical error from operation
reordering.
Output:
output: (batch_size, seqlen_q, nheads, head_dim)
attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
"""
if causal:
window_size = (window_size[0], 0)
dtype_og = q.dtype
if upcast:
q, k, v = q.float(), k.float(), v.float()
seqlen_q, seqlen_k = q.shape[1], k.shape[1]
k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
d = q.shape[-1]
if not reorder_ops:
scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
else:
scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
if key_padding_mask is not None:
scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
if window_size[0] >= 0 or window_size[1] >= 0:
local_mask = construct_local_mask(
seqlen_q,
seqlen_k,
window_size,
query_padding_mask,
key_padding_mask,
q.device,
)
scores.masked_fill_(local_mask, float("-inf"))
if attn_bias is not None:
scores = scores + attn_bias
attention = torch.softmax(scores, dim=-1).to(v.dtype)
# Some rows might be completely masked out so we fill them with zero instead of NaN
if window_size[0] >= 0 or window_size[1] >= 0:
attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
# We want to mask here so that the attention matrix doesn't have any NaNs
# Otherwise we'll get NaN in dV
if query_padding_mask is not None:
attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
dropout_scaling = 1.0 / (1 - dropout_p)
# attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
# output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
if dropout_mask is not None:
attention_drop = attention.masked_fill(~dropout_mask, 0.0)
else:
attention_drop = attention
output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
if query_padding_mask is not None:
output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
def attention_kvpacked_ref(
q,
kv,
query_padding_mask=None,
key_padding_mask=None,
attn_bias=None,
dropout_p=0.0,
dropout_mask=None,
causal=False,
window_size=(-1, -1), # -1 means infinite window size
upcast=True,
reorder_ops=False,
):
return attention_ref(
q,
kv[:, :, 0],
kv[:, :, 1],
query_padding_mask,
key_padding_mask,
attn_bias,
dropout_p,
dropout_mask,
upcast=upcast,
causal=causal,
window_size=window_size,
reorder_ops=reorder_ops,
)
def attention_qkvpacked_ref(
qkv,
key_padding_mask=None,
attn_bias=None,
dropout_p=0.0,
dropout_mask=None,
causal=False,
window_size=(-1, -1), # -1 means infinite window size
upcast=True,
reorder_ops=False,
):
return attention_ref(
qkv[:, :, 0],
qkv[:, :, 1],
qkv[:, :, 2],
key_padding_mask,
key_padding_mask,
attn_bias,
dropout_p,
dropout_mask,
upcast=upcast,
causal=causal,
window_size=window_size,
reorder_ops=reorder_ops,
)
def generate_sparsity_mask(seqlen, sparsity=0.3):
repeats = seqlen // 16 // 2
# mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
# torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
# torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
# mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
nrow, ncol = seqlen // 16, seqlen // 256
mask = torch.rand(nrow, ncol, device="cuda") < sparsity
return mask
def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
blockmask: (seqlen / 16, seqlen / 256)
attn_mask: (batch_size, seqlen)
dropout_p: float
dropout_mask: (batch_size, nheads, seqlen, seqlen)
Output:
output: (batch_size, seqlen, nheads, head_dim)
attention: softmax after dropout
"""
q, k, v = qkv.float().unbind(dim=2)
d = qkv.shape[-1]
seqlen = qkv.shape[1]
scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
blockmask = blockmask[:seqlen, :seqlen]
scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
attention = torch.softmax(scores, dim=-1)
attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)
def convert_flash_attn_S_to_softmax(
S,
seqlen_q,
seqlen_k,
query_padding_mask,
key_padding_mask,
head_dim,
is_dropout,
causal=False,
window_size=(-1, -1), # -1 means infinite window size
):
"""FlashAttention stores the S matrix in a different way.
Arguments:
S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
query_padding_mask: (batch_size, seqlen_q_rounded)
key_padding_mask: (batch_size, seqlen_k_rounded)
"""
if causal:
window_size = (window_size[0], 0)
seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
S_converted = S
if window_size[0] >= 0 or window_size[1] >= 0:
local_mask = construct_local_mask(
seqlen_q,
seqlen_k,
window_size,
query_padding_mask,
key_padding_mask,
S.device,
)
local_mask = F.pad(
local_mask,
(0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
value=True,
)
S_converted = S_converted.masked_fill(local_mask, 0.0)
# Need to zero out things not in attention_mask in case S was initialized with random values
# and some of those values aren't overwritten.
seqlen_q_og = (
query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
)
if query_padding_mask is not None:
query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
if key_padding_mask is not None:
key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
return S_converted[:, :, :seqlen_q, :seqlen_k]
def normalize_flash_attn_S(
attn_unnorm,
q,
k,
v,
query_padding_mask=None,
key_padding_mask=None,
attn_bias=None,
is_dropout=False,
causal=False,
window_size=(-1, -1), # -1 means infinite window size
):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, head_dim)
k, v: (batch_size, seqlen_k, nheads, head_dim)
key_padding_mask: (batch_size, seqlen_q)
attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Output:
softmax_lse: (batch_size, nheads, seqlen_q)
softmax_max: (batch_size, nheads, seqlen_q)
"""
if causal:
window_size = (window_size[0], 0)
q, k, v = q.float(), k.float(), v.float()
_, seqlen_q, _, head_dim = q.shape
seqlen_k = k.shape[1]
scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
if key_padding_mask is not None:
scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
if window_size[0] >= 0 or window_size[1] >= 0:
local_mask = construct_local_mask(
seqlen_q,
seqlen_k,
window_size,
query_padding_mask,
key_padding_mask,
q.device,
)
scores.masked_fill_(local_mask, float("-inf"))
if attn_bias is not None:
scores = scores + attn_bias.to(dtype=scores.dtype)
block_size_n = _get_block_size_n(scores.device, head_dim, is_dropout, causal)
scores_block = scores.split(block_size_n, dim=-1)
lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
lse = torch.logsumexp(lse_block, dim=-1)
# lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
# so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
lse[lse == float("-inf")] = float("inf")
scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
attn_norm = torch.cat(
[
a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
for a, m in zip(attn_unnorm_block, cummax_block)
],
dim=-1,
)
if query_padding_mask is not None:
attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
return attn_norm.to(dtype=attn_unnorm.dtype)
def get_dropout_fraction(
dropout_mask,
query_padding_mask=None,
key_padding_mask=None,
causal=False,
window_size=(-1, -1), # -1 means infinite window size
):
"""
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
query_padding_mask: (batch_size, seqlen_q)
key_padding_mask: (batch_size, seqlen_k)
"""
if causal:
window_size = (window_size[0], 0)
batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
dropped = ~dropout_mask
valid = torch.ones_like(dropout_mask)
if query_padding_mask is not None:
dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
valid.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
if key_padding_mask is not None:
dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
valid.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
if window_size[0] >= 0 or window_size[1] >= 0:
local_mask = construct_local_mask(
seqlen_q,
seqlen_k,
window_size,
query_padding_mask,
key_padding_mask,
dropout_mask.device,
)
dropped.masked_fill_(local_mask, False)
valid.masked_fill_(local_mask, False)
dropped_total = dropped.sum()
return dropped.sum() / valid.sum()
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [False])
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [False])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [False])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
# @pytest.mark.parametrize("d", [64])
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
@pytest.mark.parametrize("seqlen", [97, 128, 200, 384, 768, 1024, 1025, 2048])
# @pytest.mark.parametrize("seqlen", [512])
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 4
nheads = 9
window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
qkv = torch.randn(
batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
)
if alibi:
alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal)
else:
alibi_slopes, attn_bias = None, None
out, lse, S_dmask = flash_attn_qkvpacked_func(
qkv,
dropout_p,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
deterministic=deterministic,
return_attn_probs=True,
)
if dropout_p > 0.0:
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask,
seqlen,
seqlen,
None,
None,
d,
dropout_p > 0.0,
causal=causal,
window_size=window_size,
)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(
attn_unnorm,
qkv[:, :, 0],
qkv[:, :, 1],
qkv[:, :, 2],
None,
None,
attn_bias,
dropout_p > 0.0,
causal=causal,
window_size=window_size,
)
dropout_fraction = get_dropout_fraction(
dropout_mask, None, None, causal=causal, window_size=window_size
).item()
print(f"Actual dropout fraction: {dropout_fraction}")
else:
dropout_mask = None
out_ref, attn_ref = attention_qkvpacked_ref(
qkv, None, attn_bias, dropout_p, dropout_mask, causal=causal, window_size=window_size
)
out_pt, attn_pt = attention_qkvpacked_ref(
qkv,
None,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
# v = qkv[:, :, 2].float()
# qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
# if causal:
# causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
# qk.masked_fill_(causal_mask, float('-inf'))
# m = qk.amax(-1, keepdim=True)
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
# p_tmp = torch.softmax(qk / math.sqrt(d), -1)
# p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
# lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
# qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
# qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
# qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
# qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
# o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
# o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
# o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
# o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
if dropout_p > 0.0:
print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
g = torch.randn_like(out)
# do_o = (g.float() * out.float()).sum(-1)
# dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
# dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
(dqkv,) = torch.autograd.grad(out, qkv, g)
(dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
(dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
if dropout_p > 0.0:
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
if not alibi:
assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize("seqlen", [97, 128, 200, 257, 384, 512, 768, 1025, 2048])
# @pytest.mark.parametrize('seqlen', [128])
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_varlen_qkvpacked(
seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype
):
if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
pytest.skip() # Reference implementation OOM
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 5
nheads = 6
window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
qkv = torch.randn(
batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
)
key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
# key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
if alibi:
alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
attn_bias = attn_bias_from_alibi_slopes(
alibi_slopes, seqlen, seqlen, key_padding_mask, key_padding_mask, causal=causal
)
else:
alibi_slopes, attn_bias = None, None
qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
*qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
)
out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
qkv_unpad,
cu_seqlens,
max_seqlen,
dropout_p,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
deterministic=deterministic,
return_attn_probs=True,
)
out = output_pad_fn(out_unpad)
if dropout_p > 0.0:
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask,
seqlen,
seqlen,
key_padding_mask,
key_padding_mask,
d,
dropout_p > 0.0,
causal=causal,
window_size=window_size,
)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
attn = normalize_flash_attn_S(
attn_unnorm,
qkv[:, :, 0],
qkv[:, :, 1],
qkv[:, :, 2],
key_padding_mask,
key_padding_mask,
attn_bias,
dropout_p > 0.0,
causal=causal,
window_size=window_size,
)
dropout_fraction = get_dropout_fraction(
dropout_mask, key_padding_mask, key_padding_mask, causal=causal, window_size=window_size
).item()
print(f"Actual dropout fraction: {dropout_fraction}")
else:
dropout_mask = None
out_ref, attn_ref = attention_qkvpacked_ref(
qkv,
key_padding_mask,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_qkvpacked_ref(
qkv,
key_padding_mask,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
if dropout_p > 0.0:
print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
g = torch.randn_like(out)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
(dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
dqkv = dqkv_pad_fn(dqkv_unpad)
(dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
(dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
if dropout_p > 0.0:
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
if not alibi:
assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
@pytest.mark.parametrize("kvpacked", [True, False])
# @pytest.mark.parametrize("kvpacked", [False])
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(512, 256),
(1024, 1024),
(1023, 1024),
(1024, 1023),
(2048, 2048),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
# @pytest.mark.parametrize("dropout_p", [0.17])
def test_flash_attn_output(
seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
):
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 4
nheads = 9
nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
assert nheads % nheads_k == 0
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
if kvpacked:
kv = torch.randn(
batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
)
else:
k = torch.randn(
batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
)
v = torch.randn(
batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
)
if alibi:
alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
else:
alibi_slopes, attn_bias = None, None
if kvpacked:
out, lse, S_dmask = flash_attn_kvpacked_func(
q,
kv,
dropout_p,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
deterministic=deterministic,
return_attn_probs=True,
)
else:
out, lse, S_dmask = flash_attn_func(
q,
k,
v,
dropout_p,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
deterministic=deterministic,
return_attn_probs=True,
)
if dropout_p > 0.0:
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask,
seqlen_q,
seqlen_k,
None,
None,
d,
dropout_p > 0.0,
causal=causal,
window_size=window_size,
)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
if kvpacked:
kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
k_rep, v_rep = kv_rep.unbind(dim=2)
else:
k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
attn = normalize_flash_attn_S(
attn_unnorm,
q,
k_rep,
v_rep,
None,
None,
attn_bias,
dropout_p > 0.0,
causal=causal,
window_size=window_size,
)
dropout_fraction = get_dropout_fraction(
dropout_mask, None, None, causal=causal, window_size=window_size
).item()
print(f"Actual dropout fraction: {dropout_fraction}")
else:
dropout_mask = None
if kvpacked:
out_ref, attn_ref = attention_kvpacked_ref(
q,
kv,
None,
None,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_kvpacked_ref(
q,
kv,
None,
None,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
else:
out_ref, attn_ref = attention_ref(
q,
k,
v,
None,
None,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
None,
None,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
if dropout_p > 0.0:
print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
g = torch.randn_like(out)
do_o = (g.float() * out.float()).sum(-1)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
if kvpacked:
(
dq,
dkv,
) = torch.autograd.grad(out, (q, kv), g)
dk, dv = dkv.unbind(2)
(
dq_ref,
dkv_ref,
) = torch.autograd.grad(out_ref, (q, kv), g)
dk_ref, dv_ref = dkv_ref.unbind(2)
(
dq_pt,
dkv_pt,
) = torch.autograd.grad(out_pt, (q, kv), g)
dk_pt, dv_pt = dkv_pt.unbind(2)
else:
(
dq,
dk,
dv,
) = torch.autograd.grad(out, (q, k, v), g)
(
dq_ref,
dk_ref,
dv_ref,
) = torch.autograd.grad(out_ref, (q, k, v), g)
(
dq_pt,
dk_pt,
dv_pt,
) = torch.autograd.grad(out_pt, (q, k, v), g)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
if dropout_p > 0.0:
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
if not alibi:
assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
@pytest.mark.parametrize("kvpacked", [True, False])
# @pytest.mark.parametrize('kvpacked', [False])
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.float16])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize('mha_type', ["mqa"])
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 147),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(512, 256),
(1024, 1024),
(1023, 1024),
(1024, 1023),
(2048, 2048),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
# @pytest.mark.parametrize('dropout_p', [0.0])
def test_flash_attn_varlen_output(
seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
):
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 4
nheads = 9
nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
assert nheads % nheads_k == 0
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
if kvpacked:
kv = torch.randn(
batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
)
else:
k = torch.randn(
batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
)
v = torch.randn(
batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
)
query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
# key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
if alibi:
alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
attn_bias = attn_bias_from_alibi_slopes(
alibi_slopes, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=causal
)
else:
alibi_slopes, attn_bias = None, None
if kvpacked:
(
q_unpad,
kv_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q,
kv,
output_pad_fn,
dq_pad_fn,
dkv_pad_fn,
) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
q_unpad,
kv_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
dropout_p,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
deterministic=deterministic,
return_attn_probs=True,
)
else:
(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
dropout_p,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
deterministic=deterministic,
return_attn_probs=True,
)
out = output_pad_fn(out_unpad)
if dropout_p > 0.0:
S_dmask_converted = convert_flash_attn_S_to_softmax(
S_dmask,
seqlen_q,
seqlen_k,
query_padding_mask,
key_padding_mask,
d,
dropout_p > 0.0,
causal=causal,
window_size=window_size,
)
dropout_mask = S_dmask_converted >= 0
attn_unnorm = S_dmask_converted.abs()
if kvpacked:
kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
k_rep, v_rep = kv_rep.unbind(dim=2)
else:
k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
attn = normalize_flash_attn_S(
attn_unnorm,
q,
k_rep,
v_rep,
query_padding_mask,
key_padding_mask,
attn_bias,
dropout_p > 0.0,
causal=causal,
window_size=window_size,
)
dropout_fraction = get_dropout_fraction(
dropout_mask,
query_padding_mask,
key_padding_mask,
causal=causal,
window_size=window_size,
).item()
print(f"Actual dropout fraction: {dropout_fraction}")
else:
dropout_mask = None
if kvpacked:
out_ref, attn_ref = attention_kvpacked_ref(
q,
kv,
query_padding_mask,
key_padding_mask,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_kvpacked_ref(
q,
kv,
query_padding_mask,
key_padding_mask,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
else:
out_ref, attn_ref = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
attn_bias,
dropout_p,
dropout_mask,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
if dropout_p > 0.0:
print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
g = torch.randn_like(out)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
if kvpacked:
(
dq_unpad,
dkv_unpad,
) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
(
dq_ref,
dkv_ref,
) = torch.autograd.grad(out_ref, (q, kv), g)
dk_ref, dv_ref = dkv_ref.unbind(2)
(
dq_pt,
dkv_pt,
) = torch.autograd.grad(out_pt, (q, kv), g)
dk_pt, dv_pt = dkv_pt.unbind(2)
else:
(
dq_unpad,
dk_unpad,
dv_unpad,
) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
dk = dk_pad_fn(dk_unpad)
dv = dk_pad_fn(dv_unpad)
(
dq_ref,
dk_ref,
dv_ref,
) = torch.autograd.grad(out_ref, (q, k, v), g)
(
dq_pt,
dk_pt,
dv_pt,
) = torch.autograd.grad(out_pt, (q, k, v), g)
dq = dq_pad_fn(dq_unpad)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
if dropout_p > 0.0:
assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
# With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
if not alibi:
assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
assert (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
assert (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
assert (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 239),
(3, 799),
(127, 512),
(127, 513),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(1023, 1024),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
if swap_sq_sk:
seqlen_q, seqlen_k = seqlen_k, seqlen_q
device = "cuda"
causal = True
# set seed
torch.random.manual_seed(0)
batch_size = 8
nheads = 9
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size)
out_ref, attn_ref = attention_ref(
q, k, v, None, None, None, 0.0, None, causal=causal, window_size=window_size
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
None,
None,
None,
0.0,
None,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
g = torch.randn_like(out)
do_o = (g.float() * out.float()).sum(-1)
if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
(
dq,
dk,
dv,
) = torch.autograd.grad(out, (q, k, v), g)
(
dq_ref,
dk_ref,
dv_ref,
) = torch.autograd.grad(out_ref, (q, k, v), g)
(
dq_pt,
dk_pt,
dv_pt,
) = torch.autograd.grad(out_pt, (q, k, v), g)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5
if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 239),
(3, 799),
(127, 512),
(127, 513),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(1023, 1024),
],
)
# TODO: add smaller page sizes when https://github.com/Dao-AILab/flash-attention/pull/824 is merged
@pytest.mark.parametrize("paged_kv_block_size", [None, 256, 512])
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_causal(
seqlen_q, seqlen_k, swap_sq_sk, d, local, paged_kv_block_size, dtype
):
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
if swap_sq_sk:
seqlen_q, seqlen_k = seqlen_k, seqlen_q
device = "cuda"
causal = True
# set seed
torch.random.manual_seed(0)
batch_size = 8
nheads = 9
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
if paged_kv_block_size is None:
k = torch.randn(
batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True
)
v = torch.randn(
batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True
)
block_table = None
else:
k, v, block_table, k_cache_paged, v_cache_paged, num_blocks = _generate_block_kvcache(
seqlen_k, paged_kv_block_size, batch_size, nheads, d, device, dtype
)
query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
out_unpad = flash_attn_varlen_func(
q_unpad,
k_unpad if paged_kv_block_size is None else k_cache_paged,
v_unpad if paged_kv_block_size is None else v_cache_paged,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
0.0,
causal=causal,
window_size=window_size,
block_table=block_table,
)
out = output_pad_fn(out_unpad)
out_ref, attn_ref = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
None,
0.0,
None,
causal=causal,
window_size=window_size,
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
query_padding_mask,
key_padding_mask,
None,
0.0,
None,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
g = torch.randn_like(out)
do_o = (g.float() * out.float()).sum(-1)
test_backward = (d <= MAX_HEADDIM_SM8x or d > 224 or is_sm80 or is_sm90) and block_table is None
if test_backward:
(
dq_unpad,
dk_unpad,
dv_unpad,
) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
dq = dq_pad_fn(dq_unpad)
dk = dk_pad_fn(dk_unpad)
dv = dk_pad_fn(dv_unpad)
(
dq_ref,
dk_ref,
dv_ref,
) = torch.autograd.grad(out_ref, (q, k, v), g)
(
dq_pt,
dk_pt,
dv_pt,
) = torch.autograd.grad(out_pt, (q, k, v), g)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5
if test_backward:
assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(3, 1024),
(1, 339),
(64, 800),
(3, 799),
(64, 2048),
(16, 20000),
(16, 100000),
(128, 128),
(256, 256),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_splitkv(
seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, alibi, deterministic, dtype
):
if swap_sq_sk:
seqlen_q, seqlen_k = seqlen_k, seqlen_q
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 1
nheads = 12
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
if alibi:
alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
else:
alibi_slopes, attn_bias = None, None
out, lse, _ = flash_attn_func(
q,
k,
v,
0.0,
causal=causal,
window_size=window_size,
alibi_slopes=alibi_slopes,
deterministic=deterministic,
return_attn_probs=True,
)
out_ref, attn_ref = attention_ref(
q, k, v, None, None, attn_bias, 0.0, None, causal=causal, window_size=window_size
)
out_pt, attn_pt = attention_ref(
q,
k,
v,
None,
None,
attn_bias,
0.0,
None,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
g = torch.randn_like(out)
do_o = (g.float() * out.float()).sum(-1)
if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
(
dq,
dk,
dv,
) = torch.autograd.grad(out, (q, k, v), g)
(
dq_ref,
dk_ref,
dv_ref,
) = torch.autograd.grad(out_ref, (q, k, v), g)
(
dq_pt,
dk_pt,
dv_pt,
) = torch.autograd.grad(out_pt, (q, k, v), g)
print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5
mult = 2 if not alibi else 8
if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
assert (dq - dq_ref).abs().max().item() <= mult * (dq_pt - dq_ref).abs().max().item() + 2e-4
assert (dk - dk_ref).abs().max().item() <= mult * (dk_pt - dk_ref).abs().max().item() + 2e-4
assert (dv - dv_ref).abs().max().item() <= mult * (dv_pt - dv_ref).abs().max().item() + 2e-4
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("num_splits", [1, 0])
# @pytest.mark.parametrize("num_splits", [1])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mha"])
@pytest.mark.parametrize("new_kv", [False, True])
# @pytest.mark.parametrize("new_kv", [False])
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [False])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [False])
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("rotary_interleaved", [False, True])
# @pytest.mark.parametrize("rotary_interleaved", [False])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
# @pytest.mark.parametrize("rotary_fraction", [0.0])
@pytest.mark.parametrize("paged_kv_block_size", [None, 256])
# @pytest.mark.parametrize("paged_kv_block_size", [256, 512])
# @pytest.mark.parametrize("paged_kv_block_size", [256])
@pytest.mark.parametrize("has_batch_idx", [False, True])
# @pytest.mark.parametrize("has_batch_idx", [False])
@pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [128])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 128),
(1, 339),
(3, 1024),
(64, 800),
(64, 256),
(3, 799),
(64, 2048),
(16, 20000),
(1, 128 * 1024),
(16, 128 * 1024),
(128, 128),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_kvcache(
seqlen_q,
seqlen_k,
d,
has_batch_idx,
paged_kv_block_size,
rotary_fraction,
rotary_interleaved,
seqlen_new_eq_seqlen_q,
causal,
local,
alibi,
new_kv,
mha_type,
num_splits,
dtype,
):
if seqlen_q > seqlen_k and new_kv:
pytest.skip()
if not new_kv and rotary_fraction > 0.0:
pytest.skip()
if has_batch_idx and paged_kv_block_size is not None:
pytest.skip()
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 2
batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
nheads = 6
# rotary_dim must be a multiple of 16, and must be <= d
rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
assert nheads % nheads_k == 0
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
if new_kv:
k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
else:
k, v = None, None
if paged_kv_block_size is None:
k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
block_table = None
else:
(
k_cache,
v_cache,
block_table,
k_cache_paged,
v_cache_paged,
num_blocks,
) = _generate_block_kvcache(
seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype
)
cache_seqlens = torch.randint(
0 if new_kv else 1,
# If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
(seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
if new_kv
else (seqlen_k + 1),
(batch_size,),
dtype=torch.int32,
device=device,
)
arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
if has_batch_idx:
cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
:batch_size
]
else:
cache_batch_idx = None
if alibi:
alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
attn_bias = attn_bias_from_alibi_slopes(
alibi_slopes, seqlen_q, seqlen_k, None, key_padding_mask, causal=causal
)
else:
alibi_slopes, attn_bias = None, None
# cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
if rotary_dim > 0:
angle = (
torch.rand(
seqlen_k if paged_kv_block_size is None else num_blocks * paged_kv_block_size,
rotary_dim // 2,
device=device,
)
* 2
* math.pi
)
cos = torch.cos(angle).to(dtype=dtype)
sin = torch.sin(angle).to(dtype=dtype)
if causal or local:
q_ro = apply_rotary_emb(
q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
)
else:
q_ro = rearrange(
apply_rotary_emb(
rearrange(q, "b s h d -> b 1 (s h) d"),
cos,
sin,
seqlen_offsets=cache_seqlens,
interleaved=rotary_interleaved,
),
"b 1 (s h) d -> b s h d",
s=seqlen_q,
)
# q_ro = q
k_ro = apply_rotary_emb(
k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
)
else:
cos, sin = None, None
q_ro, k_ro = q, k
# k_cache[:, 64:] = -1
k_cache_ref = (
k_cache if not has_batch_idx else k_cache[cache_batch_idx.to(dtype=torch.long)]
).clone()
v_cache_ref = (
v_cache if not has_batch_idx else v_cache[cache_batch_idx.to(dtype=torch.long)]
).clone()
if new_kv:
update_mask = torch.logical_and(
cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
)
k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
out = flash_attn_with_kvcache(
q,
k_cache if paged_kv_block_size is None else k_cache_paged,
v_cache if paged_kv_block_size is None else v_cache_paged,
k,
v,
rotary_cos=cos,
rotary_sin=sin,
cache_seqlens=cache_seqlens,
cache_batch_idx=cache_batch_idx,
block_table=block_table,
causal=causal,
window_size=window_size,
rotary_interleaved=rotary_interleaved,
alibi_slopes=alibi_slopes,
num_splits=num_splits,
)
# out = flash_attn_with_kvcache(
# q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
# )
# out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
# qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
# m = qk.amax(-1, keepdim=True)
# s_tmp = torch.exp((qk - m) / math.sqrt(d))
# o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
# lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
# probs = torch.softmax(qk, dim=-1)
out_ref, _ = attention_ref(
q_ro,
k_cache_rep,
v_cache_rep,
None,
key_padding_mask,
attn_bias,
0.0,
None,
causal=causal,
window_size=window_size,
)
out_pt, _ = attention_ref(
q_ro,
k_cache_rep,
v_cache_rep,
None,
key_padding_mask,
attn_bias,
0.0,
None,
causal=causal,
window_size=window_size,
upcast=False,
reorder_ops=True,
)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
# Check that FlashAttention's numerical error is at most twice the numerical error
# of a Pytorch implementation.
if new_kv:
if paged_kv_block_size is None:
k_cache_select = (
k_cache if not has_batch_idx else k_cache[cache_batch_idx.to(dtype=torch.long)]
)
v_cache_select = (
v_cache if not has_batch_idx else v_cache[cache_batch_idx.to(dtype=torch.long)]
)
else:
k_cache_select = rearrange(
k_cache_paged[block_table.to(dtype=torch.long).flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k]
v_cache_select = rearrange(
v_cache_paged[block_table.to(dtype=torch.long).flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k]
assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
assert torch.equal(v_cache_select, v_cache_ref)
mult = 3 if not alibi else 5
assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
def _generate_block_kvcache(seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype):
num_blocks = math.ceil(seqlen_k / paged_kv_block_size) * batch_size * 3
k_cache_paged = torch.randn(
num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
)
v_cache_paged = torch.randn(
num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
)
block_table = rearrange(
torch.randperm(num_blocks, dtype=torch.int32, device=device),
"(b nblocks) -> b nblocks",
b=batch_size,
)
k_cache = rearrange(
# pytorch 1.12 doesn't have indexing with int32
k_cache_paged[block_table.to(dtype=torch.long).flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k]
v_cache = rearrange(
v_cache_paged[block_table.to(dtype=torch.long).flatten()],
"(b nblocks) block_size ... -> b (nblocks block_size) ...",
b=batch_size,
)[:, :seqlen_k]
return k_cache, v_cache, block_table, k_cache_paged, v_cache_paged, num_blocks
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [128])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 239),
(239, 1),
(3, 799),
(799, 3),
(1024, 128),
(97, 97),
(128, 128),
(200, 200),
(256, 256),
(257, 257),
(384, 384),
(512, 512),
(768, 768),
(1024, 1024),
],
)
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 60 # Sometimes we need large batch size for the race conditions to trigger
nheads = 4
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
torch.random.manual_seed(42)
out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
g = torch.randn_like(out0)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
(
dq0,
dk0,
dv0,
) = torch.autograd.grad(out0, (q, k, v), g)
# Numerical error if we just do any arithmetic on dq
dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
for i in range(250):
torch.random.manual_seed(42)
out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
assert torch.equal(out, out0)
assert torch.equal(lse, lse0)
if (d <= MAX_HEADDIM_SM8x or (d > 224 and dropout_p == 0)) or (is_sm80 or is_sm90):
(
dq,
dk,
dv,
) = torch.autograd.grad(out, (q, k, v), g)
dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
if not dq_equal:
print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
assert torch.equal(dv, dv0)
assert torch.equal(dk, dk0)
assert dq_equal
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize("d", [16, 32, 64])
# @pytest.mark.parametrize('d', [16])
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
"""We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
in the case where seqlen % 128 != 0.
"""
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 2
nheads = 5
q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
k, v = [
torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
for _ in range(2)
]
q.requires_grad_(True)
k.requires_grad_(True)
v.requires_grad_(True)
out = flash_attn_func(q, k, v, causal=causal)
g = torch.randn_like(out)
out.backward(g)
q_pt = q.detach().clone().requires_grad_(True)
k_pt = k.detach().clone().requires_grad_(True)
v_pt = v.detach().clone().requires_grad_(True)
out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
out_pt.backward(g)
q_ref = q.detach().clone().requires_grad_(True)
k_ref = k.detach().clone().requires_grad_(True)
v_ref = v.detach().clone().requires_grad_(True)
out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
out_ref.backward(g)
print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
q_pt.grad - q_ref.grad
).abs().max().item() + 1e-3
assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
k_pt.grad - k_ref.grad
).abs().max().item() + 1e-3
assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
v_pt.grad - v_ref.grad
).abs().max().item() + 1e-3
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize("d", [64, 128])
# @pytest.mark.parametrize('d', [64])
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
"""We previously had a bug where we were using the wrong strides of dout, which shows up
when dout is not contiguous.
"""
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 5
nheads = 2
q, k, v = [
torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
for _ in range(3)
]
out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
# So g is not contiguous
g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
out.backward(g)
q_pt = q.detach().clone().requires_grad_(True)
k_pt = k.detach().clone().requires_grad_(True)
v_pt = v.detach().clone().requires_grad_(True)
out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
out_pt = rearrange(out_pt, "b s ... -> s b ...")
out_pt.backward(g)
q_ref = q.detach().clone().requires_grad_(True)
k_ref = k.detach().clone().requires_grad_(True)
v_ref = v.detach().clone().requires_grad_(True)
out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
out_ref = rearrange(out_ref, "b s ... -> s b ...")
out_ref.backward(g)
print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
q_pt.grad - q_ref.grad
).abs().max().item()
assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
k_pt.grad - k_ref.grad
).abs().max().item()
assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
v_pt.grad - v_ref.grad
).abs().max().item()
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize('causal', [False])
@pytest.mark.parametrize("d", [16, 32, 64])
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
"""We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
in the case where seqlen % 128 != 0 or varlen.
"""
device = "cuda"
# set seed
torch.random.manual_seed(0)
nheads = 5
q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
Mq = 256
Mk = 3
q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
q.requires_grad_(True)
k.requires_grad_(True)
v.requires_grad_(True)
out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
g = torch.randn_like(out)
out.backward(g)
assert not q.grad.isnan().any()
assert not k.grad.isnan().any()
assert not v.grad.isnan().any()
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 239),
(3, 799),
(127, 512),
(127, 513),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(1023, 1024),
],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
if swap_sq_sk:
seqlen_q, seqlen_k = seqlen_k, seqlen_q
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 4
nheads = 9
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size, deterministic=True)
g = torch.randn_like(out)
if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
dq0, dk0, dv0 = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
for _ in range(50):
dq, dk, dv = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
assert torch.equal(dv, dv0)
assert torch.equal(dk, dk0)
assert torch.equal(dq, dq0)
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
"seqlen_q,seqlen_k",
[
(1, 239),
(3, 799),
(127, 512),
(127, 513),
(113, 203),
(128, 217),
(113, 211),
(108, 256),
(256, 512),
(1023, 1024),
],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
if (
max(seqlen_q, seqlen_k) >= 2048
and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
):
pytest.skip() # Reference implementation OOM
if swap_sq_sk:
seqlen_q, seqlen_k = seqlen_k, seqlen_q
device = "cuda"
# set seed
torch.random.manual_seed(0)
batch_size = 2
nheads = 9
window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
out = flash_attn_varlen_func(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
0.0,
causal=causal,
window_size=window_size,
deterministic=True,
)
g = torch.randn_like(out)
if (d <= MAX_HEADDIM_SM8x or d > 224) or (is_sm80 or is_sm90):
dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
for _ in range(50):
dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
assert torch.equal(dv, dv)
assert torch.equal(dk, dk)
assert torch.equal(dq, dq)