Factory-POC / flash-attention /tests /modules /test_embedding_parallel.py
Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
raw
history blame
4.04 kB
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py
import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from apex.transformer import parallel_state
from einops import rearrange
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
@pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize("world_size", [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize("sequence_parallel", [True, False])
# @pytest.mark.parametrize('sequence_parallel', [False])
@pytest.mark.parametrize("has_pos_emb", [True, False])
# @pytest.mark.parametrize('has_pos_emb', [True])
@pytest.mark.parametrize("dim", [1024])
def test_embedding_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
vocab_size = 50264
seqlen = 2048
assert vocab_size % world_size == 0
assert dim % world_size == 0
rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend="nccl", init_method="env://")
device = f"cuda:{torch.distributed.get_rank()}"
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 1024
assert (batch_size * seqlen) % world_size == 0
input_ids_pt = torch.randint(0, vocab_size, (batch_size, seqlen), device=device)
input_ids = input_ids_pt.detach().clone()
model_pt = GPT2Embeddings(
dim, vocab_size, seqlen if has_pos_emb else 0, device=device, dtype=dtype
)
model = ParallelGPT2Embeddings(
dim,
vocab_size,
seqlen if has_pos_emb else 0,
parallel_state.get_tensor_model_parallel_group(),
sequence_parallel=sequence_parallel,
device=device,
dtype=dtype,
)
partition_vocab_size = vocab_size // world_size
partition_dim = dim // world_size
with torch.no_grad():
model.word_embeddings.weight.copy_(
model_pt.word_embeddings.weight[
rank * partition_vocab_size : (rank + 1) * partition_vocab_size
]
)
if has_pos_emb:
model.position_embeddings.weight.copy_(
model_pt.position_embeddings.weight[
:, rank * partition_dim : (rank + 1) * partition_dim
]
)
out = model(input_ids, combine_batch_seqlen_dim=True)
out_pt = rearrange(model_pt(input_ids), "b s d -> (b s) d")
partition_batch_dim = batch_size * seqlen // world_size
assert torch.allclose(
out,
out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
if sequence_parallel
else out_pt,
rtol=rtol,
atol=atol,
)
g = torch.randn_like(out_pt)
out_pt.backward(g)
out.backward(
g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g
)
parallel_state.destroy_model_parallel()
assert torch.allclose(
model.word_embeddings.weight.grad,
model_pt.word_embeddings.weight.grad[
rank * partition_vocab_size : (rank + 1) * partition_vocab_size
],
rtol=rtol,
atol=atol,
)
if has_pos_emb:
assert torch.allclose(
model.position_embeddings.weight.grad,
model_pt.position_embeddings.weight.grad[
:, rank * partition_dim : (rank + 1) * partition_dim
],
rtol=rtol,
atol=atol,
)