Spaces:
Sleeping
Sleeping
# Run test with: | |
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py | |
import pytest | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from apex.transformer import parallel_state | |
from einops import rearrange | |
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings | |
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 | |
# @pytest.mark.parametrize('dtype', [torch.bfloat16]) | |
# @pytest.mark.parametrize('world_size', [2]) | |
# @pytest.mark.parametrize('sequence_parallel', [False]) | |
# @pytest.mark.parametrize('has_pos_emb', [True]) | |
def test_embedding_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype): | |
vocab_size = 50264 | |
seqlen = 2048 | |
assert vocab_size % world_size == 0 | |
assert dim % world_size == 0 | |
rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
device = f"cuda:{torch.distributed.get_rank()}" | |
assert world_size <= torch.distributed.get_world_size() | |
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) | |
rank = parallel_state.get_tensor_model_parallel_rank() | |
# set seed | |
torch.random.manual_seed(0) | |
batch_size = 8 | |
seqlen = 1024 | |
assert (batch_size * seqlen) % world_size == 0 | |
input_ids_pt = torch.randint(0, vocab_size, (batch_size, seqlen), device=device) | |
input_ids = input_ids_pt.detach().clone() | |
model_pt = GPT2Embeddings( | |
dim, vocab_size, seqlen if has_pos_emb else 0, device=device, dtype=dtype | |
) | |
model = ParallelGPT2Embeddings( | |
dim, | |
vocab_size, | |
seqlen if has_pos_emb else 0, | |
parallel_state.get_tensor_model_parallel_group(), | |
sequence_parallel=sequence_parallel, | |
device=device, | |
dtype=dtype, | |
) | |
partition_vocab_size = vocab_size // world_size | |
partition_dim = dim // world_size | |
with torch.no_grad(): | |
model.word_embeddings.weight.copy_( | |
model_pt.word_embeddings.weight[ | |
rank * partition_vocab_size : (rank + 1) * partition_vocab_size | |
] | |
) | |
if has_pos_emb: | |
model.position_embeddings.weight.copy_( | |
model_pt.position_embeddings.weight[ | |
:, rank * partition_dim : (rank + 1) * partition_dim | |
] | |
) | |
out = model(input_ids, combine_batch_seqlen_dim=True) | |
out_pt = rearrange(model_pt(input_ids), "b s d -> (b s) d") | |
partition_batch_dim = batch_size * seqlen // world_size | |
assert torch.allclose( | |
out, | |
out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] | |
if sequence_parallel | |
else out_pt, | |
rtol=rtol, | |
atol=atol, | |
) | |
g = torch.randn_like(out_pt) | |
out_pt.backward(g) | |
out.backward( | |
g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g | |
) | |
parallel_state.destroy_model_parallel() | |
assert torch.allclose( | |
model.word_embeddings.weight.grad, | |
model_pt.word_embeddings.weight.grad[ | |
rank * partition_vocab_size : (rank + 1) * partition_vocab_size | |
], | |
rtol=rtol, | |
atol=atol, | |
) | |
if has_pos_emb: | |
assert torch.allclose( | |
model.position_embeddings.weight.grad, | |
model_pt.position_embeddings.weight.grad[ | |
:, rank * partition_dim : (rank + 1) * partition_dim | |
], | |
rtol=rtol, | |
atol=atol, | |
) | |